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Abstract

Ice shelves are important to the climate system as they control the release of fresh
water from ice sheets into the ocean, with consequences for sea level rise and ocean
dynamics. Channels modifying basal melt rates and structural integrity have been
observed inscribed in the undersides of some ice shelves. Observations indicate
that some channels run in a transverse to ice flow and it has been suggested that
these form due to seasonal variations in ocean properties.

This thesis analyses the effect of seasonal variability on ice shelves and meltwater
plumes in the underlying ocean. A linear perturbation analysis on vertically
integrated ice and plume models showed that seasonal forcing of subglacial discharge
or ice flux can generate small ripples melted into the base of the ice shelf. These
ripples did not develop into overdeepened channels, but the ripples caused by ice flux
appear similar to basal terraces observed underneath some ice shelves. Code was
developed to run 1-D nonlinear simulations with the vertically-integrated equations,
producing similar results to the linear case. However, runs neglecting hydrostatic
pressure gradients exhibited a feedback causing ice flux-generated ripples to grow
into small proto-channels. A horizontally-integrated plume model was derived,
incorporating the Coriolis force and transverse plume flow into a 1-D model which
agreed well with a 3-D ocean simulation. Coupling this horizontally-integrated
plume with a co-evolving ice shelf prevented proto-channels from forming. It
appears unlikely that subglacial discharge or ice flux variations can give rise to
observed transverse channels.

A new approach was developed to predict the evolution of internal radar reflectors
observed within ice shelves, using vertically-integrated models of ice flow. It is hoped
this approach might have applications for inverse modelling and data assimilation.
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1.1 Ice Shelves in the Climate System

There are many forms of ice which play distinct and interacting roles in the climate

system. Sea ice forms from freezing the salty water of the ocean and is thus quite

different from glaciers, which form from compaction of freshwater snow (see, e.g.,

Cuffey and Paterson, 2010, , for a broad overview of glaciers). Icebergs originate

from the fragmentation of glaciers into the ocean. Glaciers on the continental scale

are often called ice sheets. If an ice sheet meets the ocean then it may form a

tide-water glacier, meaning that the ice presents a nearly vertical face to the water.

1



2 1.1. Ice Shelves in the Climate System

These formations are common in the fjords of Greenland. Alternatively, it may form

an ice-shelf, where the ice sheet becomes buoyant at a grounding line and floats on

the ocean. In this case, the ice will thin until it eventually reaches a calving front,

where icebergs break off. The bottom of an ice shelf presents a sloping, rather than

vertical, interface to the ocean. Ice sheets and shelves have been of recent interest

due to their potential to cause dramatic sea level rise as they melt in response to

global warming (e.g. Shepherd, Ivins, et al., 2012; DeConto and Pollard, 2016).

As they are already floating near hydrostatic equilibrium, the melting of ice

shelves does not directly contribute to sea level rise, except to a small degree due to

the resulting salinity and temperature changes in the ocean (Jenkins and Holland,

2007). They also contain relatively little mass compared to ice sheets. However,

the melting of ice shelves is still of importance to understanding global sea levels,

as 80% of Antarctica’s grounded ice sheets reach the ocean by flowing through an

ice shelf (Pritchard et al., 2012) and the geometry of an ice shelf can impact their

flow. As such, the ice lost due to melting of ice shelves does ultimately represent

a loss of mass from the Antarctic ice sheet and basal melting of ice shelves is

important when determining Antarctic mass balance and resulting sea level rise.

Jacobs, Helmer, et al. (1992) provided an early example of a mass balance study

which accounts for basal melting, using a combination of observational data and

modelling. They found that Antarctica had a negative mass balance (net loss of

ice) and that basal melting from ice shelves was an important contributor to mass

loss; were there no basal melting then the mass balance would have been positive.

However, the uncertainty in this estimate was substantial, and the results could

also be considered consistent with Antarctica being in a steady state. According to

this estimate, melting was a relatively minor process, with about five times more

ice mass lost from Antarctica due to iceberg calving. A more recent paper (Rignot

and Steffen, 2008) which analysed the mass balance of the ice shelf in front of the

Petermann Glacier in Greenland found that 80% of this ice shelf’s mass is removed

by basal melting before calving can occur. From an extensive survey of Antarctic ice

shelves, Rignot, Jacobs, et al. (2013) found that proportions of calving to melting
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vary greatly around the continent, with no appreciable basal melting in some areas

and mass loss almost entirely due to melting in others. Overall, basal melting was

found to be the largest mass-loss process in Antarctica.

Many ice shelves also act to buttress ice sheets, restraining their flow into the

ocean and offsetting the marine ice sheet instability (Weertman, 1974; Schoof, 2007,

2012; Alley, Anandakrishnan, et al., 2015). Marine ice sheets (those which are

grounded with bases below sea level) will have certain equilibrium grounding line

positions where the outflowing ice flux is equal to the rate of accumulation of mass

on the sheet. If the ground slopes down into the ocean then a perturbation of the

grounding line inland would result in the overlying ice being thinner and hence

there being a smaller flux through it. As such, the grounded ice would thicken and

no longer be buoyant, causing the grounding line to advance back to its original

position. Similarly if the grounding line were perturbed towards the ocean, then the

overlying ice would be thicker and the flux through it greater, causing the grounded

ice to thin and become buoyant. Thus, the grounding line would return to the

equilibrium position and this is a stable equilibrium. By a similar argument, if the

ice sheet were on ground sloping down away from the ocean, then any perturbation

to an equilibrium grounding line position would cause runaway advance or retreat.

Buttressing arises due to friction between the edges of ice shelves and the adjacent

ground. Often this is modelled as a no-slip condition (e.g. Dupont and Alley, 2006;

Goldberg et al., 2009; Sergienko, 2013), although it may also be parameterised (e.g.

Dupont and Alley, 2005) or treated as a drag force (e.g. Gagliardini et al., 2010;

Sergienko, 2013). This friction causes a shear stress within the ice shelf, resisting the

flow. As such, it can reduce the speed with which ice enters the ocean and, in some

situations, act to stabilise the equilibrium position of the grounding line (Dupont

and Alley, 2005; Goldberg et al., 2009). In certain cases, buttressing may even

cause the grounding line to advance, increasing the volume of ice above sea level

(Goldberg et al., 2009). Reduction of the length or thickness of an ice shelf would

decrease the magnitude of the buttressing due to reduced contact area for friction

on the sidewalls. This would potentially allow for greater mass loss from ice sheets
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(due to greater ice flux across the grounding line) and for grounding line retreat,

depending on the geometry of the ice shelf and ocean bed. It has been shown that

identical levels of ice thinning occurring at different locations on an ice shelf can

result in dramatically different levels of increased ice flux crossing the grounding

line (Reese et al., 2018). Ice shelves are particularly sensitive to thinning near the

grounding line, active ice streams, and shear margins. If this results in grounding

line retreat then there can be significant sea level rise, as previously grounded ice

begins to float. It is believed that, upon becoming unstable, the grounding line

can shift position very rapidly on geological timescales (on the order of hundreds of

years). With sufficient ocean warming, it may be possible for grounding line retreat

to destabilise the entire West Antarctic Ice Sheet (see review of observational and

modelling evidence by Alley, Anandakrishnan, et al., 2015).

In addition to grounded ice sheets, ice shelf melting can impact the oceans. It

has been suggested that fresh ice-shelf melt water has acted to increase the stability

of stratification in the upper layers of the ocean around Antarctica, inhibiting

convective transfer of heat from lower layers (e.g. Bintanja et al., 2013; Williams

G. D. et al., 2016). This would result in cooler surface waters and would mean

that more sea ice could form, potentially explaining the increased volumes of sea

ice observed around Antarctica, even in the face of climate change (e.g. Bintanja

et al., 2013). However, some other simulations, using historical records of mass

loss from Antarctica, found that the increase in sea ice formation which results

is small and insufficient to counteract expected ice loss due to climate change

(e.g. Swart and Fyfe, 2013).

Ocean freshening around the poles may also affect global ocean dynamics. An

early simulation by Manabe and Stouffer (1995) indicated that a ten year spike in

runoff from Greenland would cause a sudden decrease in the strength of the Atlantic

Meridional Overturning Circulation (AMOC), resulting in reduced heat transport

and cooling of the north Atlantic. However, over a period of a few centuries, the

AMOC gradually increased back to its original strength. Most research on this

subject (e.g. Vellinga and Wood, 2002; Weijer et al., 2012; Hu et al., 2013; Jackson
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et al., 2015) has focused on the impact of freshening around Greenland. Although

much uncertainty remains, it appears that some reduction in the AMOC is expected

to result from increased fresh water fluxes and this may reduce the warming from the

greenhouse effect in northern Europe. It may also alter precipitation and reduce the

productivity of vegetation. Less work has been done on freshening around Antarctica

and results have been contradictory, with some suggesting that it would reduce

the AMOC and other suggesting that it may strengthen it (e.g. Swingedouw et al.,

2009; Hu et al., 2013, and references therein). Such divergent results may be due to

the fact that freshening in the Southern Ocean can result in three different feedback

mechanisms: the freshening causing the Atlantic pycnocline to deepen and Antarctic

Bottom Water production to decrease, enhancing the North Atlantic Deep Water

(NADW) cell within the AMOC; the spread of fresh water into the North Atlantic,

tending to weaken the NADW cell; and increased winds in the southern hemisphere

due to increased temperature gradients from changes in global ocean circulation

caused by the input of the fresh water. The second of these would tend to weaken

the AMOC, while the other two tend to strengthen it, and they all act on different

time scales, causing complex interactions (Swingedouw et al., 2009, and references

therein). Furthermore, their overall effect seems to depend on the existing state of

the AMOC, making interpretation of paleo-data and different models challenging.

Ice shelves also calve icebergs, which act as distributed sources of fresh water

and sinks of heat in the oceans. As such, they can affect ocean stratification, sea

ice formation, and deep water formation (e.g. Jongma et al., 2009). Ice sheets

also impact global energy balance and atmospheric circulation. Loss of ice shelves

and, through them, ice sheets would alter the Earth’s albedo, providing a feedback

on warming (e.g. Budd et al., 1998). On multi-century timescales, the melting

of an ice shelf or sheet will change the planet’s topography, with consequences

for atmospheric dynamics such as changes to precipitation patterns and altered

stationary wave patterns (Roe and Lindzen, 2001). Similar processes as those

affecting ice shelves may be important in the dynamics of a past Snowball Earth
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(e.g. Goodman and Pierrehumbert, 2003) or for icy moons elsewhere in the solar

system (e.g. Hurford and Brunt, 2014).

Given the many roles which ice shelves play in the climate system, it is important

to understand their stability against melting and mechanical failure. Channels

have been observed melted into the base of ice shelves, which are of interest as

they may affect the stability of the ice. The formation of channels running parallel

to the direction of ice flow is thought to be well understood, but less clear is

the origin of channels observed running in the transverse direction. This thesis

seeks to evaluate the suggestion that seasonal forcing could give rise to the initial

perturbations which grow into transverse channels, using a mix of analytic and

numerical modelling techniques.

The next section of this chapter will discuss the properties of ice shelves and

the nearby oceans, particularly as they relate to melting. In § 1.3, the topography

of the basal surface of ice shelves is discussed, focusing on the channels which have

been observed etched into the bottom of many shelves. The equations typically

used to model ice shelves and their associated meltwater plumes are presented in

§ 1.4. The chapter ends with the formulation of the research question for this thesis

and gives an outline of the remainder of the dissertation.

1.2 Properties of Ice Shelves and the Adjacent
Ocean

Ice shelves (see diagram in figure 1.1) originate at a grounding line, which is the

location where an ice sheet becomes sufficiently thin to float on the ocean in

approximate hydrostatic equilibrium, although stresses near the grounding line may

cause it to deviate from this to some degree (Schoof and Hewitt, 2013). An ice

shelf will then progressively thin by a combination of basal and surface ablation

and viscous stretching until it reaches a calving front, where icebergs break off. Ice

shelves can reach sizes of order 100 km in length and tens (Greenland) to hundreds

(Antarctica) of kilometres wide (Wilson et al., 2017; Rignot, Jacobs, et al., 2013).

They range from hundreds of metres to over a kilometre thick at the grounding
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Plume

Ice Shelf

Grounding Line

Calving Front

Ambient Ocean

Figure 1.1: A simplified diagram of an ice shelf and plume. The symbols on the diagram
are used in § 1.4. The ice flow has a vertically integrated velocity u, with longitudinal and
transverse components u and v, respectively. h is the thickness of the ice shelf, while b is
the depth of its lower surface below sea level. Subglacial discharge at the grounding line,
with volume flux Qg, feeds a plume of thickness D flowing underneath the ice shelf with
vertically integrated velocity ~U . This velocity also has longitudinal, U , and transverse,
V , components. The plume has a temperature, T , and salinity, S, which drive melting
m at the base of the ice shelf. The plume is further fed by turbulent entrainment, e, of
the ambient ocean water. This water has its own temperature and salinity: Ta and Sa,
respectively.

line, tapering down to a few tens or hundreds of metres at the calving front (Cuffey

and Paterson, 2010). Ice shelf meltwater is relatively fresh and thus buoyant in

the saline seawater, causing it to flow up the sloped underside of the ice shelf in a

plume, as first modelled by MacAyeal (1985) and Jenkins (1991). The ocean water

in the ice shelf cavity underneath the plume is warmer than the melting point of

ice and hence provides a source of heat for the melting. The shear between the

plume and the ambient ocean causes warm seawater to be entrained into the plume,

providing more heat with which to drive further melting. The salt from the ocean

water acts to depress the melting point of the ice (Woods, 1992), also promoting

melt. Subglacial discharge (meltwater which accumulates underneath the ice sheet
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and flows out through the grounding line) can act to initiate the plume. While

ablation can also occur on the upper surface of an ice shelf, the process described

above tends to be the dominant source of mass loss (e.g. Rignot and Steffen, 2008).

1.2.1 Basal Melting

As described above, heat and salt from the ocean cause melting on the lower surface

of ice shelves. Melt rates on the order of 1 m yr−1 have been reported on the Ronne

Ice Shelf (Jenkins, Corr, et al., 2006) and appear to be typical for Antarctica (Rignot,

Jacobs, et al., 2013). The three remaining Greenland ice shelves tend to have melt

rates which are an order of magnitude larger (e.g. Rignot and Jacobs, 2002; Rignot

and Steffen, 2008; Wilson et al., 2017). High melt rates (& 10 m yr−1) have also been

observed on some Antarctic ice shelves adjacent to relatively warm ocean water,

such as Pine Island Glacier (e.g. Jacobs, Jenkins, Giulivi, et al., 2011; Stanton et al.,

2013; Dutrieux, Vaughan, et al., 2013). Basal melt makes up over half of mass

lost by Antarctic ice shelves, considerably more than previously thought, and is

particularly important for those ice shelves in contact with warm water in Western

Antarctica, as illustrated in figure 1.2 (Rignot, Jacobs, et al., 2013). A wide variety

of factors influence the magnitude and distribution of melt, as reviewed below.

Observations and results from a three dimensional ocean model with a static

ice sheet show that melt is the most rapid in regions of large basal slope, as this

is where warm ambient water is most rapidly entrained (Dutrieux, Stewart, et al.,

2014; Little, Gnanadesikan, et al., 2009). Because basal slope is highest near the

grounding line and high pressures at these depths reduce the melting point of ice,

the fastest melting tends to occur here (e.g. Rignot and Steffen, 2008; Dutrieux,

Vaughan, et al., 2013; Wilson et al., 2017). The majority of the melting happens

over the next few tens of kilometres, as the heat of the plume is used. Under the

remainder of the shelf, relatively little melting occurs and most of the heat carried in

the plume will be advected away (Little, Gnanadesikan, et al., 2009). While ice-shelf

shape would seem to affect the melt rate, the state of the ice shelf and the plume are

tightly coupled in all but the lowest-melt settings (Sergienko et al., 2013), making
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Figure 1.2: Pie charts show the fraction of mass loss in each named ice shelf around
the Antarctic coast due to basal melting (black) compared to that due to calving (white).
Colours indicate melt rates under each ice shelf. (Image source: Rignot, Jacobs, et al.,
2013)

Figure 1.3: The results of various studies relating ice shelf melt rates to ocean
temperatures near the ice shelf. The studies of Rignot and Jacobs (2002) and Shepherd,
Wingham, et al. (2004) were observational, while the remainder were modelling studies.
(Plot source: Holland et al., 2008)
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it difficult to untangle cause and effect and meaning that uncoupled simulations,

such as that of Little, Gnanadesikan, et al. (2009), must be viewed with caution.

As would be expected, the melt rate underneath ice shelves appears to increase

with the difference between the melting point of ice and the ocean temperature.

However, there is little agreement between studies on the functional dependence

of melt rate on temperature, as can be seen in figure 1.3 (Holland, Thomas, et al.,

2008). Observational data from within ice shelf cavities is sparse. While indicating

a positive trend between melt and temperature, it is noisy (Rignot and Jacobs,

2002; Shepherd, Wingham, et al., 2004). Jenkins (2011) and Walker, Holland,

et al. (2013) both used similar one dimensional vertically integrated plume models

(see § 1.4.2) to evaluate the dependence of melt rate on temperature. The former

found a linear relationship in the immediate vicinity of the grounding line, where

subglacial discharge is the main source of buoyancy, while there was an unspecified

nonlinear relationship elsewhere. Walker, Holland, et al. (2013) found a power

law dependence between the maximum melt rate and temperature. An earlier

suite of two dimensional plume simulations found what also appeared to be a

linear relationship, although this was over a much smaller range of temperatures

(Payne et al., 2007). Gladish et al. (2012) and Sergienko (2013) also performed

two dimensional plume simulations coupled to an evolving ice shelf and found

that melt rates increased with ocean temperature. Interestingly, Gladish et al.

(2012) found that lowering the temperature below a certain threshold resulted in

a drastic reorganisation of melting leading to increased melting overall. However,

these simulations were subject to numerical difficulties, so it is unclear whether

this is a realisable physical effect.

Using a fully three dimensional general circulation model (GCM), Holland

et al. (2008) found a quadratic relationship between melt rate and temperature.

Given the complexity of the model used, the quadratic curve fit the data with a

remarkable degree of accuracy. By simplifying the equations, Holland et al. (2008)

identified that the melt rate was determined by the product of the temperature

difference between the ocean and the melting point and the velocity at which the
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plume moved beneath the ice shelf. In regions where meltwater was the dominant

source of buoyancy, Jenkins (2011) also found that the melt rate was a product of

plume temperature and velocity, the latter itself a function of temperature. While

Jenkins did not investigate any further, Holland et al. (2008) found that the plume

velocity varied linearly with temperature: higher temperatures resulted in greater

melting of the ice shelf, with the resulting fresh water lowering the plume density

and increasing its buoyancy. Under the prevailing geostrophic balance, increased

buoyancy led to faster across-shelf flow. The exact value of the coefficients in

the quadratic were found to depend on the shape of the ice shelf and the basal

topography. While this was the first study to identify a quadratic relationship

rather than a linear fit or other power law, Holland et al. (2008) found that the data

could be fit with a reasonable degree of accuracy by a power law similar to those

used in most other studies, and that most of those studies finding linear results

were looking at too small a range of temperatures to be able to identify nonlinear

behaviour. It should be noted that the simplicity of the relationship between melt

rate and temperature found here may, in part, be due to the parameterisations

used to describe thermal transfer, which are linear with the plume velocity. Some

simulations, such as those by Sergienko (2013), used a more complicated relationship,

although this would not necessarily have a large impact on the results. A later

3-D study using a nonlinear parameterisation and a different scheme for vertical

discretisation reproduced these results (Gwyther, Cougnon, et al., 2016), suggesting

the linear thermal transfer was not a determining factor.

Changing the distribution of water temperature can also alter melting. Sergienko

et al. (2013) found that, beneath ice shelves where the bottom layer of water was

already relatively warm, allowing the warm water to impinge into shallower depths

resulted in a greater increase in melting than did increasing the temperature of the

deep water. However, beneath ice shelves where the water was initially colder, the

opposite was found. In both settings, the melt rate increased with the thickness

of the ice shelf, as thicker ice penetrates into deeper water with higher pressure,

where the melting temperature is thus lower.
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Another parameter which can influence the melt rate of ice shelves in models

is subglacial discharge. Jenkins (2011) found that melt rates scaled with the cube

root of the discharge rate. Gladish et al. (2012) recorded a linear change in melt

rate with subglacial discharge, up to the threshold at which the ice shelf became

unstable. Note that while ocean temperature could only plausibly vary by a few

degrees, plausible subglacial discharge rates span several orders of magnitude, so

this mechanism could potentially greatly influence the melt rate.

In addition to parameters which might vary naturally, the melt rate depends on

parameters which are intrinsically constant but poorly constrained. For example,

Millgate et al. (2013) report changes to melt rate depending on the eddy viscosity

used to parameterise turbulence, with increased viscosity generally leading to higher

melt rates. Similarly, a plume model found that melting increases with basal

drag (Walker, Holland, et al., 2013). However, this is only true when entrainment

depends on basal drag—otherwise the resulting decrease in plume velocity due to

drag leads to decreased melting. Similar experiments run with a fully 3-D ocean

model also showed melt increasing with drag but found that, in warm cavities, there

was a maximum drag coefficient beyond which the melt rate plateaued (Gwyther,

Galton-Fenzi, et al., 2015). Finally, a very weak negative correlation between ocean

salinity and melting has been noted by Payne et al. (2007).

None of the above analysis accounts for tidal mixing, in which the velocity of

the ocean imparted by tidal forcing would alter the entrainment and turbulent salt

and heat transfer rates. This would be expected to be most significant near the

grounding line, where in-flowing water would be moving the fastest and there is

minimal vertical mixing required. A simplified 1-D model used by Holland (2008)

indicated that there would only be a significant zone of tidal mixing (where the

plume model would break down) underneath an ice shelf with a shallow basal

slope, in cold water. A study using a full ocean circulation model for the Larsen C

Ice Shelf, however, found that tidal effects were significant (Mueller et al., 2012).

Without tidal mixing, melt was strongest at the grounding line, while with it the

melt was concentrated around two peninsulas at the grounding line and in a region
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in north-east of the shelf, near the calving front. However, in all simulations this ice

shelf had a very small melt rate (. 0.5 m s−1), suggesting that perhaps these effects

would not be so significant in a more rapidly melting ice shelf where tidal forces

would be small compared to buoyancy and plume dynamics would thus dominate

the flow. (Gwyther, Cougnon, et al., 2016) also found that the inclusion of tidal

forcing changed the distribution of melt, as well as increasing the rate slightly. In

this case simulations were run in a cavity with idealised geometry. However, here

the melt became more concentrated near the grounding line, eastern boundary, and

calving front. Changes to the melt rate and pattern were much more dramatic for

cold cavities with low non-tidal melt rates, as postulated above.

Because the melting point of ice decreases with increasing pressure (and hence

increasing depth), water which is at or above the freezing point at the grounding

line will become super-cooled as it rises in the plume, assuming it experiences

no external heating. In the super-cooled regions, ice crystals form in suspension

(so-called frazil ice), which, once large enough, precipitate onto the ice shelf bottom

forming marine ice (e.g. Bombosch and Jenkins, 1995; Smedsrud and Jenkins, 2004).

This behaviour, in which ice is melted near the grounding line and refrozen closer

to the calving front, is called an ice pump (Lewis and Perkin, 1986). However,

this does not occur for ice shelves with shallow grounding lines or in contact with

warmer ocean water. This report focuses on ice shelves meeting the latter criteria

and, as such, ice pump behaviour is ignored hereafter.

In summary, many factors are important to determining the basal melt rates of

ice shelves. There is a positive correlation between melting and ocean temperature,

although the form of this dependence remains unclear and it may depend on the

dynamical balance in a particular cavity. The most vigorous melting tends to occur

near the grounding line, where the ice is deepest in the ocean, hence having the

lowest pressure-dependent melting point and being in contact with the warmest

water. The shape of the ice shelf affects the melt rate, meaning that the ice and

ocean are tightly coupled systems. Melt rates have also been shown to depend on

subglacial discharge, eddy viscosity, and turbulent drag.
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Figure 1.4: A simplified diagram of the water masses present around Antarctica. (Image
source: Foldvik and Gammelsrød, 1988)

1.2.2 Ocean Properties

As much of the melting of ice shelves is driven by the ocean, it is important to

understand ocean properties near them. The Southern Ocean consists of cold,

relatively fresh Antarctic Surface Water (AASW, flowing away from the pole) and

warmer, saline Circumpolar Deep Water (CDW, flowing towards the pole), with

other deep water masses (originating in the Atlantic, Pacific, or Indian oceans)

filling the space in between, as shown in figure 1.4 (Foldvik and Gammelsrød, 1988).

Beneath all of this lies a flow of very cold Antarctic Bottom Water at the sea floor

(Foldvik and Gammelsrød, 1988). Water on the continental shelf around Antarctica

tends to be stratified in two layers: AASW and somewhat warmer bottom water,

separated by a thermocline (e.g. Jacobs, Hellmer, et al., 1996; Smith et al., 1999;

Nicholls and Østerhus, 2004; Jacobs, Jenkins, Hellmer, et al., 2012). Around most

of Antarctica the lower layer remains relatively cold however, often with potential
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temperatures of −2◦C. In these cold areas, the mass of water below the upper

mixed layer is formed by High Salinity Shelf Water (HSSW), produced during sea

ice formation, which can then flow into the cavity beneath ice shelves (Nicholls and

Østerhus, 2004). Along with super-cooled ice shelf melt water (Ice Shelf Water, ISW),

which can be dense enough to sink beneath the AASW too, the HSSW could also

flow over the ledge of the continental shelf (Foldvik and Gammelsrød, 1988; Nicholls

and Østerhus, 2004). In the Amundsen and Bellingshausen Seas (West Antarctica),

bottom potential temperatures can reach over 1◦C (Schmidtko et al., 2014).

In the West Antarctic seas, where the most vigorously melting ice shelves are

present, the bottom layer of the ocean has been found to have similar properties to

the Circumpolar Deep Water (CDW) found in the Antarctic Circumpolar Current,

or ACC (Jacobs, Hellmer, et al., 1996; Jacobs, Jenkins, Hellmer, et al., 2012). The

upper layer of CDW is modified by partially mixing with the AASW. The warm

modified CDW will diffuse some heat into the water above, explaining why even

the surface temperatures in the Amundsen and Bellingshausen seas are warmer

than elsewhere around Antarctica (Smith et al., 1999; Jacobs, Jenkins, Hellmer,

et al., 2012). Smith et al. (1999) observed that the upper 100–200 m of the ocean

in this region consists of AASW with relatively low salinity and temperatures

near freezing. During the summer, solar radiation and melting of sea ice warms

and freshens the upper 20–30 m of water, while mixing from storms results in the

creation of several distinct layers. During the autumn and winter, as warming stops

and storms increase, the surface layer eventually becomes well-mixed again. It also

cools considerably during these months, forming Winter Water (Costa et al., 2008).

Observations have indicated that CDW flows onto the continental shelf near West

Antarctica through a series of channels (Klinck et al., 2004; Arneborg et al., 2012;

Wåhlin et al., 2013; Assmann et al., 2013). This finding has also been replicated in

modelling studies (Thoma et al., 2008; Dinniman et al., 2012; Assmann et al., 2013;

Nakayama et al., 2014). However, there is disagreement over the exact mechanism

responsible. Some studies (e.g. Klinck et al., 2004; Jacobs, Jenkins, Hellmer, et al.,

2012; Walker, Jenkins, et al., 2013) suggest that the ACC is diverted by basal
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topography to flow onto the continental shelf. Others (e.g. Thoma et al., 2008;

Dinniman et al., 2012) suggest that transport is driven by wind forcing. There is

also debate over the degree of variability in this flow. Those modellers who found

that transport of CDW was driven by winds indicated that there was significant

seasonal variability. Klinck et al. (2004) suggest that CDW is carried onto the

shelf in distinct intrusion events. There are some hints of seasonal variability in

the observations of Wåhlin et al. (2013), although the observational period was

too short to be conclusive. These variations in inflow had the effect of raising

the thermocline on the continental shelf at certain times of year. However, other

observations suggest that CDW transport is fairly steady (Arneborg et al., 2012;

Walker, Jenkins, et al., 2013), and a combined observational and computational

study by Assmann et al. (2013) showed that 70% of the heat transport is due

to persistent inflow. A high-resolution simulation run by St-Laurent et al. (2015)

suggested that heat loss through polynyas was a key driver of seasonal variability in

ocean heat content and ice shelf melting in the Amundsen Sea. However, Jenkins,

Dutrieux, Jacobs, Steig, et al. (2016) noted that seasonal wind patterns also affect

such surface processes, these surface processes could not explain observed warming

at depth, and that observed variations in heat were compatible with the results of

Thoma et al. (2008). Despite some issues, Jenkins, Dutrieux, Jacobs, Steig, et al.

(2016) concluded that the work of Thoma et al. (2008) still represents a plausible

mechanism for forcing the movement of warm water onto the continental shelf. A

set of mooring-based observations noted seasonal variation of heat transport onto

the continental shelf and found that it correlated well with Ekman pumping due

to sea ice drag (Kim et al., 2017). The strength of this pumping depended on ice

extent and seasonality was thus due to variations in the size of polyanas rather

than wind strength. It has also been suggested that surface heat flux processes may

explain seasonal variations in ocean temperature at shallower depths, while altered

ocean flow patterns (likely driven by local wind conditions) explain deeper and

interannual variability (Webber Benjamin G. M. et al., 2017). Clearly, considerable

uncertainty remains regarding the nature of warming events in the Amundsen Sea.
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It is the ocean conditions in the cavities underneath ice shelves which affect

their melting and not those in front of them. In particular, the most vigorous

melting occurs at the grounding line, at the extreme end of the cavity. As such,

understanding the transport of CDW onto the continental shelf is insufficient; its

transport into the sub-ice shelf cavity is also important. This is not necessarily

strait-forward to estimate, with Dinniman et al. (2012) finding that there were

complex interactions between melt rates, CDW flux, and westerly winds, which made

understanding the impact of a single factor difficult. Time scales for ventilating

the cavities beneath ice shelves are also important. These tend to be interannual

(Jenkins, Holland, et al., 2004; Mueller et al., 2012), suggesting that seasonal

variations in the ocean in front of the ice shelf may have little direct impact on

seasonality of melt at the grounding line. More recent work by Holland (2017)

showed that even if variation occur on a timescale shorter than the ventilation

period, they can still produce some change in melting, although this is smaller than

would be expected based solely on the magnitude of temperature change at the

calving front. Ventilation tends to occur more quickly for warm-cavity ice shelves,

so in these cases seasonal variability at the front can still have some significant effect

near the grounding line. Shallower ice shelves, such as George VI Ice Shelf, appear

to be more affected by changes in the ocean driven by surface processes (Holland

et al., 2010). Highly local factors, such as bathymetry, can also be important. An

example of this would be Pine Island Glacier, in the cavity of which there is a

prominent ridge. Autosub3 observations show that, while CDW penetrates well into

the cavity in front of the ridge, it has trouble accessing behind the ridge (Jenkins,

Dutrieux, Jacobs, McPhail, et al., 2010; Dutrieux, De Rydt, et al., 2014). However,

fast, turbulent flow of water over the ridge has resulted in higher melt rates in the

ice above it, widening the gap and making it easier for CDW to access the posterior

cavity (Jenkins, Dutrieux, Jacobs, McPhail, et al., 2010).

In contrast to Antarctica, access of water from the continental shelf to ice shelves

around Greenland is mediated by the presence of fjords (see Straneo and Cenedese,

2015, and references therein for a broad review of fjord properties). Much like the
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shelf water outside of them, water in fjords tends to consist of a cold, relatively

fresh upper layer of polar origin and a warmer, more saline lower layer of Atlantic

origin. There is also at least one layer modified by fresh glacial meltwater, at the

surface or between the Atlantic and polar water. Some of the circulation within

fjords may be the result of these buoyancy-driven flows. More important, however,

are the intermediary flows, driven by density variations outside of the fjord. Such

variations can arise from up- or down-welling caused by wind or from advection

of density anomalies past the mouth of the fjord. If the fjord is sufficiently wide,

then this circulation will be geostrophic. This mechanism would be able to flush

the upper to mid-depth fjord water in a time scale of about two months. The

deepest fjord water is often separated from the ocean by a sill and fed by dense

water which flows over the sill and entrains shallower fjord water. Less is known

about the circulation of this water, which would be in closest contact with an ice

shelf grounding line; studies estimate renewal time scales ranging from months to

decades (Straneo and Cenedese, 2015, and references therein).

To summarise, oceans near ice shelves tend to be stratified into two layers, with

a cold, relatively fresh layer sitting atop a warmer, more saline one. Around most

of Antarctica, the bottom layer consists of cold HSSW, but in the Amundsen and

Bellingshausen Seas it is made up of warmer CDW which has intruded onto the

continental shelf. The rate at which CDW crosses onto the shelf may vary seasonally,

but this remains uncertain. The ocean around Greenland is similarly stratified, but

warm water must intrude into a fjord before it can reach an ice shelf. In all cases, the

ocean water must move from the calving front to the grounding line of an ice shelf,

a process for which the timescale is thought to be interannual for the larger shelves.

1.2.3 Basal Hydrology and Subglacial Discharge

Glaciers in Greenland have been observed to accelerate during the summer, in-

creasing in speed by over 100% in some cases (e.g. Zwally et al., 2002; Joughin

et al., 2008; Bartholomew et al., 2010). This acceleration correlates with increased

surface melt in many cases. It is believed that summer-time surface melt was able
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to make its way to the glacier base via cracks and moulins, where it lubricated

basal sliding and caused accelerated ice flow into the ocean (Zwally et al., 2002;

Das et al., 2008; Bartholomew et al., 2010). It is expected that the subglacial

drainage system would be modified in response to this increased volume flux with

the potential to further affect basal sliding, as discussed by Schoof and Hewitt

(2013). Of particular interest her is that this meltwater can enter the ocean at the

base of a tidewater glacier or ice shelf, providing the source of subglacial discharge.

This discharge will vary seasonally and is strongest during the summer (Straneo

and Cenedese, 2015). Less is known about subglacial hydrology in Antarctica, but

there is evidence suggesting that some channels on ice shelves connect to drainage

channels beneath the upstream ice sheet (e.g., Le Brocq et al., 2013). Combined

satellite and modelling data also indicate that outflow from subglacial lakes varies

over time (Carter and Fricker, 2012). This could drive oscillations in subglacial

discharge and ice velocity for Antarctic ice shelves as well.

1.3 Basal Topography

Observational surveys have revealed the existence of extensive networks of channels

on the undersides of some ice shelves. Channels are variations in basal depth of

ice shelves, reaching up to a few hundred metres in height and typically a few

kilometres in width (e.g. Rignot and Steffen, 2008; Vaughan et al., 2012). Narrower

and shallower channels have also been observed (Langley et al., 2014; Drews, 2015).

Channels have been most extensively studied in the ice shelves associated with the

Petermann Glacier (Rignot and Steffen, 2008; Dutrieux, Stewart, et al., 2014) and

Pine Island Glacier (Payne et al., 2007; Mankoff et al., 2012; Vaughan et al., 2012;

Dutrieux, Stewart, et al., 2014). However, they appear to be widespread and have

also been observed under the Amery Ice shelf (Fricker et al., 2009), Filchner-Ronne

Ice Shelf (Le Brocq et al., 2013), Fimbul Ice Shelf (Langley et al., 2014), Roi

Baudouin Ice Shelf (Drews, 2015), Ross Ice Shelf (Marsh et al., 2016), Nansen Ice

Shelf (Dow et al., 2018), and various other areas around Antarctica (Alley, Scambos,

et al., 2016). A map of locations of channels in ice shelves can be found in figure 1.5
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Figure 1.5: Locations of channels in ice shelves around Antarctica. These are classified
according to where they are initiated (see legend, which also gives the total length
observed). Each dot represents 50 km of channel. Colour around the continent indicates
ocean temperatures at depths shallower than 1500 m. (Image source: Alley, Scambos,
et al., 2016)

(Alley, Scambos, et al., 2016). The basal topography can be measured using airborne

radar (e.g. Vaughan et al., 2012; Le Brocq et al., 2013; Alley, Scambos, et al.,

2016), satellite-based radar (e.g. Rignot and Steffen, 2008) or imagery (e.g. Alley,

Scambos, et al., 2016), surface altimetry coupled with assumptions of hydrostatic

equilibrium (e.g. Payne et al., 2007; Bindschadler, Vaughan, et al., 2011; Alley,

Scambos, et al., 2016; Gourmelen et al., 2017; Dow et al., 2018), ground-based

radar (e.g. Dutrieux, Stewart, et al., 2014), and autonomous underwater vehicles

using sonar (e.g. Vaughan et al., 2012; Dutrieux, Stewart, et al., 2014).

Using satellite imagery and altimetry data, in addition to airborne radar data,

Alley, Scambos, et al. (2016) identified three categories of channels: those beginning

away from the grounding line (hereafter, ocean sourced), those beginning at the

grounding line where sources of subglacial discharge are believed to occur (hereafter,
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subglacially sourced), and those beginning at the grounding line away from suspected

sources of subglacial discharge (hereafter, grounding line sourced). Ocean and

subglacially sourced channels were found to deepen along the flow. All channel

types tended to have steeper western walls, presumably as a result of Coriolis forces

steering flow and heat transfer in the ocean beneath the channel. Channels were

found to be most common on ice shelves exposed to warm oceans, such as those

in Western Antarctica (Alley, Scambos, et al., 2016), but have also been observed

under ice shelves where the ocean is only slightly warmer than the freezing point

(Langley et al., 2014). In addition to the types of channels described above, Fricker

et al. (2009) and Dow et al. (2018) identified channels on the Amery and Nansen Ice

Shelves (respectively) which form in the suture zones where ice streams join. Dow

et al. (2018) suggest that in, the case of the channel on Nansen Ice Shelf, this is due

to one of the ice streams being thicker than the other, causing a large basal gradient

in the suture zone. This gradient promotes plume flow and hence basal melting.

Observations by Dutrieux, Stewart, et al. (2014) have revealed that channels

beneath Petermann and Pine Island Glacier (PIG) ice shelves do not have smooth

sides. Instead they consist of flat terraces ranging from tens to hundreds of

metres across, joined by steep slopes with elevation changes of 20–40m. It was

also noted that the melting rate remained fairly constant across each terrace

but would jump between them.

Both Vaughan et al. (2012) and Dutrieux, Stewart, et al. (2014) found indications

of crevasses above the vertices of channels in the Pine Island ice shelf. The former

measured the crevasses to have widths of 50–100m and heights of at least 30 m

and as much as 210 m, while the latter measured widths of about 200 m. Ridges

were observed on the surface of the ice shelf between channels and were found to

feature extensive surface crevasses (Vaughan et al., 2012). A linear-elastic thin

beam model was proposed to explain the formation of these crevasses. The region of

the ice shelf in which channels form would no longer be in hydrostatic equilibrium

with the ocean and, as such, the surface above the channels would tend to sag,

forming the aforementioned ridges on the surface between channels. This would
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cause compression of the ice above the channels and extension of ice on the ridges.

The mechanical stress from the extension would cause crevasses to form. Similarly,

on the base of the ice shelf, compression would occur between the channels and

extension at the channels’ apexes, causing crevasses to form at the latter. Vaughan

et al. (2012) tested this hypothesis numerically using a finite element model, which

produced the expected patterns of stress, although it was not sophisticated enough

to be able to model the actual fracture process. Such a process would weaken ice

shelves and could lead to their disintegration. Additionally, crevasses capable of

fracturing the ice shelf have been observed running transverse to channels (Dow

et al., 2018). These are thought to form in regions where the ice is thinnest (e.g.,

due to channels) and is laterally constrained, preventing longitudinal cracks from

developing. The indentations between ridges have been found to funnel surface

melt-water into rivers on the Nansen and Petermann Ice Shelves (Dow et al., 2018).

Stanton et al. (2013) found that melt occurred at the apex of a channel in the

PIG ice shelf but hardly at all on the keel. However, Dutrieux, Stewart, et al. (2014)

found a more complicated relationship, with melt being highest at apexes near the

grounding line and highest at the keels farther away. The locations where Stanton

et al. (2013) took their data fell in the region where Dutrieux, Stewart, et al. (2014)

found melting to be most pronounced on the keels. However, while Stanton et al.

(2013) measured the melt rate by drilling through the ice, Dutrieux, Stewart, et al.

(2014) calculated it from the mass balance, suggesting that more weight should be

given to the direct measurements of the former. Using ice-penetrating radar to

measure ice thickness around a channel on the Ross ice Shelf over several weeks,

Marsh et al. (2016) also found the melt to be highest at the channel apex.

Various numerical studies have shown that the melt-water plume from the

ice shelf tends to be directed along the channels. This result is robust across a

range of modelling approaches: linear stability analysis (Dallaston et al., 2015),

ocean plume models with a static ice shelf Payne et al., 2007; Millgate et al., 2013,

and coupled ice shelf/ocean plume models (Gladish et al., 2012; Sergienko, 2013).

Such channelised flow would increase entrainment within channels, transferring
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more heat from the ambient ocean to the ice shelf and thus causing increased

melt and deepening the channel. Channelisation of warm water is supported by

the observation of persistent polynyas in front of the PIG ice shelf corresponding

to the positions of channels (Mankoff et al., 2012). Thus, if some perturbation

initiates a channel, this channelisation feedback effect would allow it to grow.

Multiple studies have established that variability in the underlying topography at

the grounding line can provide such a perturbation (Gladish et al., 2012; Sergienko,

2013; Dallaston et al., 2015).

In a highly simplified linear perturbation analysis, it was found that variation in

subglacial discharge along the grounding line can also cause channelisation (Dallaston

et al., 2015). In this case, the increased flux of melt-water in some regions along the

grounding line cause increased melting in those areas, creating the beginnings of a

channel. The meltwater flow channelisation feedback then acts to grow the channel

along the length of the ice shelf. This is in keeping with observations which found

that basal channels on the Filchner-Ronne ice shelf (Le Brocq et al., 2013), along

with many others (Alley, Scambos, et al., 2016), were aligned with the predicted

locations for outflow of subglacial discharge. On the Ross Ice Shelf, melt rates are

strongest just behind the starting location of a channel (Marsh et al., 2016). This,

coupled with a nearby system of draining lakes on the surface of the ice, led Marsh

et al. to conclude that this channel was also initiated by subglacial discharge.

Sergienko (2013) demonstrated that shear stress at the shelf boundaries can

cause spontaneous channelisation, even without variations in basal topography

or subglacial discharge at the grounding line. The shear stress causes a laterally

nonuniform basal profile for the ice shelf, which is then exaggerated via the melt-

driven feedback. This causes further stress in the shelf, resulting in the warping of

its interior and the formation of channels. Like Vaughan et al. (2012), Sergienko

(2013) found that the stress caused by channels in ice shelves was sufficient to cause

the ice to fracture and form crevasses. This, combined with the fact that channels

can drastically thin the ice shelves at their apex (Rignot and Steffen, 2008) and

can feature higher melting rates than the surrounding ice (Gourmelen et al., 2017),
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suggests that channels could encourage the breakup of ice shelves. Furthermore,

the surface rivers observed above channels by Dow et al. (2018) could further thin

the ice shelf through erosion and, when they flow into a crevasse (as on Nansen

Ice shelf), enlarge cracks through hydrofracture.

On the other hand, running simulations of a Petermann-like ice sheet, Gladish

et al. (2012) and Millgate et al. (2013) found that increasing the number of channels

in an ice shelf of fixed size, and hence decreasing the width of the channels, tends

to decrease the overall melt rate. This was because the channel keels tended to

impede large scale geostrophic flow over the full extent of the ice shelf, causing

the plume to move more slowly and thus be less effective at transferring heat from

the ambient ocean. While this was not analysed, the results of simulations of a

PIG-like ice shelf by Sergienko (2013) are broadly in agreement, as average melt

rates in shelves featuring channels are similar to or smaller than those without.

This was true even in cases where the Coriolis forces were neglected, potentially

indicating that geostrophic balance is not the only mechanism responsible for this

effect. The tendency of channels to reduce overall melt rates may act to preserve

ice shelves. As a result of these contrasting impacts on fracture and melt, the net

effect of channels on ice shelf stability remains unclear. Nonetheless, if ice shelf

stability is assessed only from the area-averaged melt rate and fails to account

for the potentially higher melt within channels then ice shelf stability will be

overestimated (e.g. Gourmelen et al., 2017).

There may be a preferred scale for channel formation: Dallaston et al. (2015)

found that steeper slopes, caused by narrower channels, amplify the channelisation

effect, while narrower channels tend to be smoothed out by modelled eddy diffusivity.

These two mechanisms interact to cause a channel width for which there is

optimal growth.

The numerical models of ice shelves discussed above have all made the assumption

that the ice is floating in hydrostatic equilibrium with the ocean. There is no reason

to think this is necessarily true around channels, where bridging stresses could be

significant. Drews (2015) used a fully 3-D Stokes model of the ice to test whether
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Figure 1.6: (a) The thickness (black dots) of the Pine Island Glacier ice shelf along a
transect running parallel to the direction of flow. A five term polynomial (thick black
line) was fit to these data. Also shown (mauve lines) is the heat content in front of the
ice shelf at the time each portion of ice was estimated to have crossed the grounding
line, determined from the simulation of Thoma et al. (2008). Mauve dots correspond to
January of the year with which they are labelled. The green curve is thickness the ice
shelf would have had were there no basal melt. (b) An inset from the previous panel,
with detrended thickness data. (Plot source: Bindschadler, Vaughan, et al., 2011)

or not this was the case. Prescribing a basal melt rate, it was found that only

very narrow channels deviated substantially from hydrostatic equilibrium; for the

conditions in this study, the ratio of channel width to depth had to be less than 5.

This condition is not met for the vast majority of channels which have been studied,

although Drews (2015) observed such narrow channels in the Roi Baudouin Ice Shelf.

In addition to channels running in the direction of the ice flow, Bindschadler,

Vaughan, et al. (2011) identified wave-like basal oscillations in one segment of the

PIG ice shelf, the keels of which run perpendicular to the flow (see figure 1.6).

The size of these voids was found to correlate with estimates for the ocean heat
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content in front of the ice shelf in the year that the ice in question crossed the

grounding line and the spacing was consistent with ice advection over an annual

period. Ocean heat data were taken from a simulation run by Thoma et al. (2008),

which calculated ocean circulation in the Amundsen Sea and deep Southern Ocean,

forced with historical surface temperature and pressure data. Heat content would

reach a maximum during the late austral summer or, in some years, in the early

austral winter. The minimum occurred more regularly, in austral midwinter.

Bindschadler, Vaughan, et al. (2011) suggested that the voids seen in the ice shelf

profile arose from a warmer ocean at certain times of year, which expanded basal

crevasses near the grounding line where melting is most intense. In effect, these

crevasses would be acting as initial perturbations which would then be expanded

via the meltwater feedback, as in longitudinal channels. Bindschadler, Vaughan,

et al. (2011) felt that the oceans would contain sufficient heat at any time of year to

expand a crevasses, suggesting that the warm water in some way caused crevasses

to form. This could occur if the warmer water caused higher melt rates and lower

friction, leading to acceleration of the ice sheet’s motion with the resulting stress

causing the ice to fracture. Alternatively, warmer water has been shown to result,

counter-intuitively, in colder internal temperatures of the ice, which would make

it more brittle and liable to form crevasses (Sergienko et al., 2013). Changing

water temperature could drive variable melt, but modelling results indicate that

water temperatures within the cavity tend to vary on a timescale that is longer

than one year (Holland, 2017).

However, stress from shelf boundaries has also been shown to result in channels

running at an angle to the direction of flow (Sergienko, 2013), which may render

the earlier explanation unnecessary. Furthermore, the results of Thoma et al. (2008)

have been called into question by some observations. Walker, Jenkins, et al. (2013)

found that transport of CDW onto the continental shelf was primarily the result of

an undercurrent, driven by the Antarctic Slope Front, which there is no reason to

expect to vary over the year. While this does not preclude seasonal variations due
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to wind forcing, it suggests they may be less important than thought by Thoma

et al. (2008), as discussed earlier in § 1.2.2.

There have been some limited additional observations of transverse channels. A

single one, several hundred metres across, was observed under the Fimbul ice shelf

(Langley et al., 2014). A mooring observed that the ocean water was running parallel

to the channel, although it is unclear whether this is due to channelisation or the

direction of flow across the entire ice shelf. There are some indications of transverse

ripples under the floating ice tongue of Ryder Glacier and oscillations in the melt

rate under the 79 North Glacier’s ice tongue, both in Greenland (Wilson et al., 2017).

These features are a few kilometres in width and a few tens of metres in height, but

are rather indistinct. Two transverse channels appear to have formed in a fully 3-D

Stokes flow simulation of an ice shelf, qualitatively similar to that of Pine Island

Glacier, coupled to a fully 3-D ocean model (Asay-Davis et al., 2016). The width and

spacing of these channels were at least an order of magnitude larger than what was

observed by Bindschadler, Nowicki, et al. (2013), although the depth is comparable.

The mechanism leading to the formation of these channels has not been explored.

On the Larsen C ice shelf, transverse crevasses have been observed (McGrath,

Steffen, Scambos, et al., 2012; McGrath, Steffen, Rajaram, et al., 2012; Luckman

et al., 2012). Whereas a channel is formed from melting of the ice shelf, a crevasse

is formed from the ice fracturing under stress and tend to be narrower. However,

a narrow channel could easily be mistaken for a wide crevasse or vice-versa. In

particular, the shape of the crevasse studied by McGrath, Steffen, Rajaram, et al.

(2012) appears very channel-like: approximately a kilometre in width, 200 m in

height, and with fairly smooth corners. However, McGrath, Steffen, Scambos, et al.

(2012) observed crevasses with sharp corners; were melting to play a significant role

in their evolution, one might expect such features to have been smoothed out. These

crevasses are a few hundred metres in width and on the order of 100 m high, much

smaller than the features seen by Bindschadler, Vaughan, et al. (2011). Despite this,

McGrath, Steffen, Scambos, et al. (2012) referred to the features of Bindschadler,

Vaughan, et al. (2011) as crevasses, rather than channels. The mechanisms of melting
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and fracture are not mutually exclusive; Vaughan et al. (2012) found that crevasses

would often form at the apex of channels under Pine Island Glacier. It is also possible

that crevasses would serve to initiate melt-driven channel growth, as suggested by

Bindschadler, Vaughan, et al. (2011). The crevasses observed by McGrath, Steffen,

Scambos, et al. (2012) and Luckman et al. (2012) were spaced periodically. However,

the timescales for the periodicity calculated from ice flow range from interannual

to decadal, depending on the location. This suggests that the annual spacing seen

by Bindschadler, Vaughan, et al. (2011) may just be a coincidence.

In summary, there is clear evidence of variations of ice thickness with periodic

spacing. The spacing between these features on Pine Island Glacier agreed with

annual ice advection, but indicated longer advective time scales elsewhere. These

observations may arise due to either crevassing, melt, or some feedback between

the two. Further research into the plausibility of seasonal mechanisms for channel

formation is required to properly evaluate this.

1.4 Ice and Ocean Fluid Dynamics

There are multiple approaches to modelling ice and the ocean, of varying complexity.

Glaciers can be modelled as three dimensional systems using the Stokes equation

for viscous flow (c.f. Schoof and Hewitt, 2013). While this is the most accurate

approach, it is computationally expensive to solve and is therefore seldom used. For

this reason, simplifying assumptions are usually adopted to allow the ice equations

to be vertically integrated to become a 2-D system, known as the shallow shelf

model when applied to an ice shelf (Morland and Shoemaker, 1982). This is the

model used for all calculations in this thesis and its derivation is discussed in § 1.4.1.

Similarly, the ocean in the cavity beneath the glacier can be modelled as a

fully 3-D fluid. This can be achieved by running an existing ocean simulation

code in the cavity (e.g. Millgate et al., 2013; Jordan et al., 2018), but is also

computationally expensive. As such, simplified models are often adopted. At the

other end of the complexity spectrum are empirically tuned parameterisations which

calculate the melt rate as a function of properties such as ocean temperature, basal
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depth, basal slope, and/or distance from the grounding line (e.g. Walker, Dupont,

et al., 2008; Little, Goldberg, et al., 2012). While efficient, this approach can not

capture feedback between the ice shelf shape and ocean flow. As such, models

of intermediate complexity are often used. Jenkins (2016) proposed a 1-D model,

assuming variation only in the direction perpendicular to the base of the ice, which

was able to separate the boundary current into a superposition of geostrophic flow

and friction-dominated flow adjacent to the ice, similar to an Ekman layer. However,

this required choosing an arbitrary assumption in order to impose gradients in the

direction parallel to ice-ocean interface, such as prescribing an entrainment velocity

(leading to divergence) or a thermal driving gradient. Without such assumptions,

only trivial steady-state results could be produced. Plume models have also been

widely used, in which the equations describing the ocean are vertically integrated

to reduce them to a 2-D system (e.g. Jenkins, 1991). Such a model is used in

this thesis and presented in § 1.4.2.

1.4.1 Shallow Shelf Model

Although usually thought of as a solid, on large scales ice can be modelled as a

highly viscous non-Newtonian fluid. It is treated as incompressible, so that

∇ · ~u = 0, (1.1)

where ~u = (u, v, w) is the ice velocity field. Stress (σij) is decomposed into isotropic

(corresponding to pressure, p) and deviatoric (τij) components, according to σij =

−pδij + τij. The deviatoric stress is expressed as

τij = 2ηDij, Dij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
, (1.2)

where η is the viscosity, Dij is the strain rate, and xi = (x, y, z) represent the

two horizontal and the vertical coordinates, with x and y often chosen so as to

align parallel and perpendicular to the direction of ice flow, respectively. The

viscosity is typically (Schoof and Hewitt, 2013) parameterised in power law form

according to Glen’s law (Glen, 1958):

η = 1
2BD

1/n−1
2 . (1.3)
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Here, B is a coefficient which is often treated as a function of temperature, D2 =√
DijDij/2 is the second invariant of the strain rate, and n is a constant parameter,

typically set to 3 (Schoof and Hewitt, 2013), although the Newtonian limit (n = 1)

is also sometimes considered for analytical tractability (e.g. Dallaston et al., 2015).

Using this expression for stress, the ice in an ice shelf can be described by the

Navier-Stokes equation. However, scale analysis shows that acceleration is negligible

and it can be expressed as a Stokes flow only (Schoof and Hewitt, 2013):
∂τij
∂xj
−∇p+ ρ~g = 0, (1.4)

where ~g is gravitational acceleration and ρ the density. The ice shelf is assumed to

be in hydrostatic balance internally and with the ocean, meaning pressure gradients

balance the force of gravity. As such, s = (1 − ρi/ρ0)h and −b = ρi/ρ0h, where

s is the altitude of the upper surface, ρi is the density of ice, ρ0 is the density of

the ocean (typically treated as a constant reference density under the Boussinesq

approximation), h is the ice thickness, and b is the depth of the basal surface. The

upper and lower surfaces satisfy, respectively,
∂s

∂t
+ u(s)∂s

∂x
+ v(s)∂s

∂y
= w(s) + a, (1.5a)

∂b

∂t
+ u(b) ∂b

∂x
+ v(b)∂b

∂y
= w(b) +m, (1.5b)

where t is time, a is the rate of accumulation (henceforth assumed to be zero

for convenience) on the upper surface of the ice shelf, and m is the melt rate at

the base. These equations express that the Lagrangian rate of change of these

surfaces is the sum of the vertical ice velocity at the surface and ice gained and

lost from accumulation and melting, respectively.

The shallow shelf model, which appears to have first been developed by Morland

and Shoemaker (1982), assumes that the ice has a plug flow so that u and v are

independent of z. Integrating equation (1.4) vertically and using equation (1.1)

to eliminate dependence on w, a 2-D stress tensor can be found with the form

(e.g. MacAyeal, 1989, Appendix A)

~T =
2ηh

(
2∂u
∂x

+ ∂v
∂y

)
ηh
(
∂u
∂y

+ ∂v
∂x

)
ηh
(
∂u
∂y

+ ∂v
∂x

)
2ηh

(
2∂v
∂y

+ ∂u
∂x

) . (1.6)
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Applying all of these assumptions and splitting the momentum equation into

horizontal components, the ice shelf can be described by the system

∂h

∂t
+ ∂

∂x
(hu) + ∂

∂x
(hu) = −(ρi/ρ0)m,

(1.7a)
∂

∂x

[
2ηh

(
2∂u
∂x

+ ∂v

∂y

)]
+ ∂

∂y

[
ηh

(
∂u

∂y
+ ∂v

∂x

)]
− (1− ρi/ρ0)ρigh

∂h

∂x
= 0, (1.7b)

∂

∂x

[
ηh

(
∂u

∂y
+ ∂v

∂x

)]
+ ∂

∂y

[
2ηh

(
∂u

∂x
+ 2∂v

∂y

)]
− (1− ρi/ρ0)ρigh

∂h

∂y
= 0. (1.7c)

1.4.2 Plume Model

The plume of melt-water beneath the ice shelf can be described in a similar manner

to the shallow-water approximation (e.g. Pedlosky, 1987, Chapter 3). Such models

were initially developed for buoyant gas in mine shafts (Ellison and Turner, 1959)

and katabatic winds (Manins and Sawford, 1979). Jenkins (1991) extended and

applied them to the cavity beneath ice shelves.

The plume adjusts on much shorter timescales than the ice shelf due to faster

flow, so it can be modelled as being in steady-state for the instantaneous ice

geometry. In three dimensions and using the Boussinesq approximation, ocean

flow is described by the equations

∇ · ~U = 0, (1.8a)

ρ0~U · ∇~U = ρw~g −∇p+ ρ0∇ · ~Sij, (1.8b)

∇ · (S~U) = ∇ · (κ∇S), (1.8c)

∇ · (T ~U) = ∇ · (κ∇T ), (1.8d)

representing conservation of mass, momentum, salt, and heat, respectively. The

3-D velocity field is ~U3 = (U, V,W ), p is the pressure, Sij the stress tensor, ρw is the

density of the water in the plume, S is the salinity, and T is the temperature. It is

assumed that turbulent mixing can be described as diffusion, with diffusivity κ. The

stress in the interior arises due to eddy viscosity (∇ · Sij = κ∇2~U , with the eddy

viscosity, κ, here assumed to be equal to the eddy diffusivity with both treated as
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constants). At the boundary between the plume and the ice there is assumed to be

a turbulent drag (Sij · ~n = −Cd|~U |~U , where ~n is the vector normal to the boundary,

Cd is the drag coefficient, and ~U = (U, V ) is the horizontal velocity components).

Because the plume layer is shallow compared to its length, it is assumed to

be approximately in hydrostatic equilibrium, with a vertical momentum balance

between pressure gradients and gravitational forces. The plume has a representative

thickness D. Below the plume, the ocean is assumed to be motionless, with

ambient conditions ρa, Ta, and Sa. The Boussinesq approximation is applied, and

equation (1.8) is vertically integrated to yield (Holland and Feltham, 2006)

∇ · (D~U) = e+m, (1.9a)

∇ · (D~UU) = Dg′
(
∂b

∂x
− ∂D

∂x

)
+ gD2

2ρ0

∂ρw
∂x

+∇ · (κD∇U)− Cd|~U |U, (1.9b)

∇ · (D~UV ) = Dg′
(
∂b

∂y
− ∂D

∂y

)
+ gD2

2ρ0

∂ρw
∂y

+∇ · (κD∇V )− Cd|~U |V, (1.9c)

∇ · (D~US) = eSa +∇ · (κD∇S) +mSm − γS(S − Sm), (1.9d)

∇ · (D~UT ) = eTa +∇ · (κD∇T ) +mTm − γT (T − Tm), (1.9e)

where e is rate at which turbulent entrainment transports water from the ambient

ocean into the plume, g′ = (ρa − ρw)/ρ0 is the effective gravity due to density

differences between the ambient ocean and the plume, b = −(ρi/ρ0)h is the basal

draft of the ice shelf, Si is the salinity of the ice (typically zero), and Tm is the

salinity-dependent melting point. Sm is the equilibrium melt salinity at the interface

between the ice and the ocean. Transfer coefficients for temperature and salinity

from the plume to the boundary layer between the plume and the ice shelf are,

respectively, γT and γS. The model above assumes a well-mixed flow with uniform

properties U , V , T , and S within the plume of depth D. However, a similar solution

could be obtained even if the plume were not well mixed, with U , V , T , and S

treated as depth-averaged values. The equations would differ by the presence of

scalar multipliers on various terms, which are shape factors quantifying the plume’s

departure from uniformity, as in the result of Manins and Sawford (1979).
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A linear equation of state of the form

ρw = ρref [1 + βS(S − Sref)− βT (T − Tref)] (1.10)

is assumed, where βS is the haline contraction coefficient, βT is the thermal expansion

coefficient, and Sref , Tref , and ρref are reference values for salinity, temperature, and

density about which the relation has been linearised. Entrainment is a function

of plume velocity and the Richardson Number. It can be shown (Magorrian and

Wells, 2016, supplementary information) that, when buoyancy is balanced by drag

(i.e. when the slope is small), entrainment using common parameterisations (e.g.

Kochergin, 1987) approximately reduces to

e = E0|~U | sin(θ) ≈ E0|~U ||∇b|, (1.11)

where E0 is usually chacarcterised as a constant and θ is the angle of the basal slope

(e.g. Jenkins, 1991; Dallaston et al., 2015). An alternative common parameterisation

used in plume models (e.g. Jungclaus and Backhaus, 1994; Holland, Feltham, and

Jenkins, 2007; Payne et al., 2007; Sergienko, 2013) is that of Kochergin (1987):

e = c2
L

Sm

√
|~U |2 + g′D

Sm
, (1.12)

where cL is constant and Sm is the turbulent Schmidt number. This can be

represented as a function of the Richardson number, Ri = g′D/|~U |2, the ratio of

potential to kinetic energy in the stratified flow, with

Sm = Ri

0.0725(Ri+ 0.186−
√
Ri2 − 0.316Ri+ 0.0346)

. (1.13)

Entrainment requires kinetic energy to preform work when lifting denser water into

the less dense plume, overcoming the stratification, hence its dependence on Ri.

This behaviour is emulated b the slope dependence in equation (1.11).
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1.4.3 Coupling and Thermodynamics

The plume and the ice shelf are coupled in two ways: the shape of the ice shelf

affects the dynamics of the plume, while the properties of the plume determine the

melt rate, which contributes to the evolution of both the plume and the shelf. The

melting rate can be determined using thermodynamics and conservation of salt.

Although marine ice has been observed to accumulate on the bottom of an ice shelf

(Oerter et al., 1992), deposited from frazil ice which has formed in a plume, the

emphasis here is on warm ocean conditions, where melting dominates.

The most common approach to finding the melting point of ice is that described

by Holland and Jenkins (1999). Their analysis assumes a thin boundary layer at

the ice-ocean interface, with different salinity and temperature values than the core

of the plume. They use a linear expression for the melting point of ice,

Tm = aSm + b+ cpB, (1.14)

where pB is the pressure at that location, and a, b, and c are empirically determined

constants that control the freezing-point depression by salinity, reference melting

temperature, and pressure dependent melting temperature, respectively. The

latent heat needed to melt the ice must be balanced by the divergence of the

heat flux at the interface:

QT
P −QT

I = ρi
ρ0
mL, (1.15)

where QT
I is the heat flux from the boundary to the ice, QT

P is the heat flux coming

from the plume to the boundary, and L is the latent heat of fusion for ice. Similarly,

the salt flux needed to counterbalance the input of fresh melt-water and maintain

the equilibrium melt salinity at the ice-ocean boundary must equal the divergence

of the salt flux. As salt can not flow into the ice, this condition becomes

QS
P = ρ0m(Sm − Si), (1.16)

where QS
P is the flux of salt from the plume to the boundary and Si is the salinity of

the ice. The ice only has a salinity if seawater freezes to the shelf’s base. While this
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can occur, measurements indicate that the salinity is typically very small (Oerter

et al., 1992; Eicken et al., 1994) and it is thus usually treated as zero.

The problem now becomes one of estimating heat and salt fluxes. Holland and

Jenkins (1999) took these to be driven by diffusion across a molecular sublayer at

the ice-ocean interface and thus proposed the relationships

Tm = aSm + b+ cpB, (1.17a)

γT co(T − Tm) = m(L+ ci[Tm − Ti]), (1.17b)

γS(S − Sm) = mSm, (1.17c)

where co is the specific heat capacity of sea water, ci is the specific heat capacity of

ice, and Ti the far-field temperature of the ice shelf. This is referred to as the three-

equation formulation. Note that equation (1.17c) means that the final two terms in

equation (1.9d) cancel. Holland and Jenkins (1999) also found that assuming the

salinity at the boundary is equal to that in the plume (the two-equation formulation)

produces acceptable results. Typically, the transfer coefficients are taken to be

γT = U∗

2.12 ln
(
U∗D
ν

)
+ 12.5Pr2/3 − 9

, (1.18a)

γS = U∗

2.12 ln
(
U∗D
ν

)
+ 12.5Sc2/3 − 9

, (1.18b)

a formulation which can be derived from dimensional and self-similarity arguments

for shear flow, with coefficients determined from experimental data (Kader and

Yaglom, 1972). Here U∗ =
√
Cd|~U | is the friction velocity, ν is the kinematic viscosity

of sea water, Pr is the Prandtl number (ratio of viscosity to thermal diffusivity),

and Sc is the Schmidt number (ratio of viscosity to the saline diffusivity). However,

on testing various formulations for melting against observations taken at the Ronne

Ice Shelf, Jenkins, Nicholls, et al. (2010) found that results obtained using transfer

coefficients of the form γ{T,S} = Γ{T,S}U∗, where Γ{T,S} were constants tuned to their

data, agreed with the data just as well as those obtained using equation (1.18) and

recommended using the simpler form. Note that although these equations do not

account for buoyancy fluxes which could destabilise or stabilise the boundary layer,
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Holland and Jenkins (1999) still found them to agree well with more sophisticated

models. Recently an alternative representation of melting based on turbulent

convection has been derived which does not have any tunable parameters and has

been found to agree well with laboratory experiments, although it has not yet been

well tested on the scale of ice shelves (McConnochie and Kerr, 2018).

1.5 Statement of Intent

While their overall effect on ice shelf stability is unknown, the origin of most

channels on the bottom of ice shelves is thought to be fairly well understood.

Longitudinal channels are initiated by spatial variations in basal topography or

subglacial discharge, or by shear stress against the side of an ice shelf. These small

perturbations then grow due to a feedback effect wherein melt-water is channelised,

resulting in locally enhanced melting. However, while this explanation works well

for channels running parallel to the ice flow, it remains unclear what processes

could initiate the channels observed running transverse to the flow. It has been

suggested that seasonal variability in ocean heat could play this role (Bindschadler,

Vaughan, et al., 2011). More generally, there is an incomplete understanding of

the effects of temporal variability in ice influx and melting on ice shelf structure.

The purpose of this research was to examine how variability on seasonal and other

timescales modifies the geometry, melt, and dynamics of an ice shelf, and whether

this provides a mechanism for transverse channel formation. Variations in subglacial

discharge and ice flux across the grounding line were investigated. Both properties

have been observed to undergo dramatic seasonal variations for Greenland glaciers

(e.g. Sole et al., 2013; Tedstone et al., 2013, and references therein). Variations

in ocean heat were not tested as they would have a very similar effect on the ice

melt-rate as variations in subglacial discharge.

A 1-D linear perturbation analysis was performed to determine the effect on

ice shelf geometry of temporal variations in subglacial discharge and incoming ice

flux, as described in Chapter 2. This identified the key physical mechanisms of

ice shelf response, and showed that such variation can give rise to small ripples
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in the ice shelf thickness, but these were one to two orders of magnitude smaller

than observations and did not produce overdeepenings (where the ice thins with

x and then thickens again). However, varying ice flux forcing did produce some

features reminiscent of basal terraces.

Chapter 3 documents the nonlinear simulations which were performed of a 1-D

ice shelf subject to seasonal perturbations. It starts by explaining the numerical

methods used to perform these calculations, along with the testing and benchmarking

performed, before discussing the results. The subglacial discharge-forced simulations

had very similar results to the corresponding linearised calculation. However, the

ice flux-forced simulations exhibit a feedback effect which causes the ripples to grow

into overdeepenings towards the end of the ice shelf. For the cold cavity conditions

that were tractable with the present code, typical ripple amplitudes are of order

∼ 1 m to ∼ 10 m (for subglacial discharge and ice-flux forcing, respectively). This

is considerably smaller than the large overdeepenings observed by Bindschadler,

Vaughan, et al. (2011) at Pine Island Glacier.

The development of a new simplified model to capture the transverse component

of the plume velocity (vital to the channelisation feedback) and model the Coriolis

force in 1-D are detailed in Chapter 4. The derivation of this model is described and

its behaviour analysed in simple settings, initially uncoupled from ice shelf evolution.

It was found that the model could predict 2-D plume flow that is qualitatively

similar to that found with 3-D ocean models. When this model was coupled to

an evolving ice geometry it was found that it did not result in channelised plume

flow and did not produce overdeepenings.

A new approach for capturing the evolution of internal reflectors/isochrones in

a vertically integrated glacier model is documented in Chapter 5. Its use within

ice shelf simulations is demonstrated, including prediction of the effect of seasonal

variability on internal reflectors. The chapter ends with a discussion of the future

potential to use this technique in inverse modelling to calculate current and past

ice velocity from radar data.
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Finally, the results of all this work are summarised in Chapter 6 and avenues for

further research are proposed. Additionally, Appendix A provides an explanation

of the design of the software written to perform the nonlinear shelf and plume

simulations, so that others may be able to make use of it in future.
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As described in the previous chapter, observations appear to show transverse

basal channels under Pine Island Glacier (Bindschadler, Vaughan, et al., 2011). The

spacing of these channels is roughly the distance ice would be advected in a year,

suggesting they may be formed by some sort of seasonal variability. Potential sources

of that variability are the ice flux crossing the grounding line and, due to varying

subglacial discharge, the melt rate (e.g. Bartholomew et al., 2010). This mechanism

is examined here using a linear analysis of a coupled ice shelf and ocean system.

39
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2.1 Simplified 1-D Shelf Model

For the purposes of this analysis, a greatly simplified model of the shelf and plume

was created which could be handled analytically. This involved applying various

approximations and assumptions to the ice shelf and plume equations, so as to obtain

an analytically tractable model which captures the essential physical processes.

The approach detailed below is similar to that of Dallaston et al. (2015). They

applied steady-state 2-D perturbations to a 1-D plume/ice shelf solution, in order to

investigate the formation of longitudinal channels. Here, time-varying perturbations

are applied to a 1-D steady-state in order to study the formation of transverse ripples.

The ice shelf described using a vertically integrated model, while the ocean

underneath it is modelled as a vertically-integrated plume over an ambient body of

water (see figure 1.1). The systems of equations (1.7) for the ice shelf and (1.9) for

the meltwater plume were (unlike in the case of Dallaston et al., 2015) converted

to a 1 dimensional form, dropping all terms containing transverse velocities or

derivatives in y. The ice was assumed to have a Newtonian rheology (constant

viscosity η). Entrainment was parameterised using equation (1.11). Note that this

form allows certain terms to cancel which made the system analytically tractable.

In order, to make the equations easier to work with the density of the plume was

treated as independent of temperature. This is motivated by the fact that, for

typical variations in temperature and salinity in a plume, the changes in density

due to temperature are an order of magnitude smaller than those due to salinity

(Dallaston et al., 2015). The melting temperature was taken to be independent of

salinity and pressure. Jenkins (2011) noted that it was a reasonable approximation

to set the melt rate as a function of the plume salinity, Tm(S), rather than the

salinity of the boundary layer, Tm(Sb). Noting that Tm(S)− Tm(Sa) is much less

than the thermal driving T −Tm(Sa), it is clearly also reasonable to set Tm from the

ambient salinity value. Thus, this model is similar to previously established ones

such as that of Jenkins (2011), albeit without pressure dependence. The ice shelf is

taken to be already near the melting point, so that no heat is required to warm it

before initiating melt. The heat needed to warm the ice could be accounted for by
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slightly increasing the latent heat of fusion although, given that the heat capacity

is small, this correction is minor. Finally, the simpler approach recommended

by Jenkins, Nicholls, et al. (2010) for calculating thermal transfer was used, with

γT = Γ∗T |~U |, where Γ∗T = ΓT
√
Cd is a dimensionless constant encapsulating the

drag coefficient. These simplifications allow the system of equations (1.17) for the

thermodynamics at the ice-ocean interface to be reduced to

mL = coΓ∗T |~U |(T − Tm). (2.1)

Defining S∆ = Sa − S and, for convenience, taking the ambient ocean to have

uniform salinity, temperature, and density ρa = ρ0, the equations for the shelf

and the plume are, respectively

∂h

∂t
+ ∂

∂x
(hu) = −(ρ0/ρi)m, (2.2a)

∂

∂x

(
4ηh∂u

∂x

)
−
(

1− ρi
ρ0

)
ρigh

∂h

∂x
= 0, (2.2b)

d

dx
(DU) = e+m, (2.3a)

d

dx
(DU2) = DgβSS∆

(
db

dx
− dD

dx

)
+ gD2βS

2
dS∆

dx
+ d

dx

(
κD

dU

dx

)
− CdU2,

(2.3b)
d

dx
(DUS) = eSa + d

dx

(
κD

dS

dx

)
, (2.3c)

d

dx
(DUT ) = eTa + d

dx

(
κD

dT

dx

)
+mTm −

mL

co
. (2.3d)

Note that the melting and salt flux terms were eliminated from equation (2.3c)

using equation (1.17c). Grounding line motion was neglected in order to make the

equations tractable, although in reality some motion would be expected.

The thickness and velocity of the ice shelf are imposed at the grounding line,

x = 0, and it is assumed that the ice melts away entirely at some position x = X

(to be determined):

h(0) = hg, h(X) = 0, u(0) = ug. (2.4)
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An imposed volume flux of subglacial discharge, Qg, initiates the flow of the plume

at the grounding line. Subglacial water is formed from melting of the glacier, so is

at the melting temperature of water and has no salinity. The speed of its outflow

is prescribed, leading to plume boundary conditions

D(0)U(0) = Qg, U(0) = Ug, S(0) = 0, T (0) = Tm. (2.5)

2.1.1 Nondimensionalisation and Simplification

Before further simplifying equations (2.2) and (2.3), they were converted to a

dimensionless form. In order to do this, the unitless parameters of Dallaston et al.

(2015) were introduced. Note that one parameter used here, γ, varies by a factor of

2 from that used by Dallaston et al. (2015). Equations (2.2) suggest the parameters

r ≡ ρ0

ρi
γ ≡ (1− ρi/ρ0)ρigh0x0

4ηu0
, λ ≡ ρ0m0x0

ρih0u0
, (2.6)

to describe the ice shelf. Here, h0 is the scale of the ice thickness, x0 is the scale of

the horizontal coordinate, u0 is the scale of the ice velocity, and m0 is the scale of

the melt rate. The parameter r is the density ratio, γ represents the ratio of the

hydrostatic pressure gradient to viscous forces in the ice (quantifying the amount

of stretching that will occur), while λ represents the ratio of the melt rate to the

mass flux of ice through the grounding line.

Rhe temperature was expressed in terms of T∆ ≡ Ta − T . The plume variables

were converted to a dimensionless form (indicated by a prime) according to

D = D0D
′, U = U0U

′, S∆ = S∆0S
′
∆, T∆ = T∆0T

′
∆, m = m0m

′,

with the scales

U0 =
(
Qg0gβSSa

E0

)1/3

, m0 = coΓ∗TU0(Ta − Tm)
L

,

D0 = E0h0, S∆0 = Qg0Sa
D0U0

, T∆0 = Γ∗Tx0

D0
(Ta − Tm).

(2.7)

The U0 scale is set by a balance between buoyancy and momentum loss via

entrainment, m0 comes from the transfer of heat from the ambient ocean to melt
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the ice, D0 indicates that plume thickness is set by entrainment, S∆0 expresses

salinity as that of the ambient ocean diluted by the subglacial discharge, and

T∆0 is set by the balance between entrained heat and heat used by melting. The

characteristic timescale of ice advection is t0 = x0/uo. These are the same as the

scalings used by Dallaston et al. (2015).

Non-dimensionalizing equations (1.11), (2.1), and (2.3) results in the following

six parameters describing the plume:

εm ≡
m0x0

D0U0
, εg ≡

Qg0

D0U0
, ν ≡ κ

U0x0
,

µ ≡ Cdx0

D0
, δ ≡ D0

h0
= E0, β ≡ co(Ta − Tm)

L
.

(2.8)

These represent the ratios of basal melt to entrained flux (εm), subglacial volume

flux to entrained flux (εg), eddy diffusivity to inertia (ν), deceleration from drag

to deceleration from the entrained mass flux (µ), characteristic thickness of the

plume to that of the ice shelf (δ, relevant for the buoyancy correction), and the

inverse Stefan number which characterises the ratio of sensible to latent heat (β).

Typical values for these parameters can be found in table 2.1. These parameters

are the same as those adopted by Dallaston et al. (2015).

Using the above parameters, the equations for the ice shelf and plume can

be written in a non-dimensional form. For convenience, the primes are dropped

from the nondimensional variables and they are given the same symbols as used

in equations (2.1)–(2.3). The ice equations become

∂h

∂t
+ ∂

∂x
(hu) = −λm, (2.9a)

∂

∂x

(
h
∂u

∂x

)
− γh∂h

∂x
= 0. (2.9b)

The nondimensional form of the melt rate is

m = |U |
(

1− εm
β
T∆

)
(2.10)
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Table 2.1: Typical values for the scales and parameters used in the nondimensional form
of the couple plume/ice shelf equations. These are the same values as used by Dallaston
et al. (2015), with the exception of γ, which is defined differently here so as to be double
that in the earlier paper. The value of Γ∗T was chosen by Dallaston et al. (2015) to give
results consistent with the observed melt rate for Petermann Glacier.

Parameter Description Typical Value
ρ0 Reference water density 1030 kg m−3

ρi Ice density 916 kg m−3

g Acceleration due to gravity 9.8 m s−2

L Latent heat of fusion 3.35× 105 J kg−1

c Specific heat of water 3.98× 103 J kg−1 K−1

E0 Entrainment coefficient 0.036
βS Haline contraction coefficient 7.86× 10−4 psu−1

βT Thermal contraction coefficient 3.87× 10−5 K−1

Cd Turbulent drag coefficient 2.5× 10−3

Γ∗T Thermal transfer coefficient 5.7× 10−5

κ Turbulent diffusivity/viscosity 10–100 m2 s−1

η Ice viscosity 2.6× 1013 Pa s
u0 Ice velocity scale 1 km yr−1

h0 Ice thickness scale 600 m
x0 Length scale 11 km
t0 Time scale 11 yr
m0 Melt scale 18 m yr−1

Qg Subglacial discharge 10−2 m2 s−1

D0 Plume thickness scale 22.6 m
U0 Plume velocity scale 0.42 m s−1

Sa Ambient salinity 34.6 psu
Ta − Tm Ambient temperature 2◦C

r density ratio 1.12
γ dimensionless stretching rate 2
λ dimensionless melt rate 0.37
ν dimensionless eddy diffusivity 0.0022–0.022
δ dimensionless buoyancy correction 0.036
εg subglacial flux/entrained flux 1.1× 10−3

εm subglacial melt/entrained flux 6.9× 10−4

µ dimensionless drag coefficient 1.27
β inverse Stefan number 0.027
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and b = r−1h. The plume equations have the dimensionless form

d

dx
(DU) = |U |

∣∣∣∣∣ dbdx
∣∣∣∣∣+ εmm, (2.11a)

d

dx
(DU2) = DS∆

(
db

dx
− δdD

dx

)
+ ν

d

dx

(
D
dU

dx

)
− µ|U |U + δD2

2
dS∆

dx
, (2.11b)

d

dx
(DUS∆) = εm

εg
m+ ν

d

dx

(
D
dS∆

dx

)
, (2.11c)

d

dx
(DUT∆) = βm+m+ ν

d

dx

(
D
dT∆

dx

)
. (2.11d)

Note that the boundary conditions at the grounding line look somewhat different

in their dimensionless form than in equation (2.5):

DU = εgQg, U = Ug, S∆ = 1
εg
, T∆ = β

εm
. (2.12)

As in Dallaston et al. (2015), a number of simplifications motivated by the

scales in table 2.1 were used to make the plume equations tractable for an analytic

solution. It is assumed that the heat entering the plume due to entrainment is

much greater than that lost to melting the ice shelf. Then

melting rate× latent heat� ocean heat× entrainment

⇒ melting rate
entrainment �

ocean heat
latent heat

∴ εm � β.

Entrainment is assumed to be the dominant source of specific mass flux for the

plume, dominating over both melting and subglacial discharge. As such

εm, εg � 1.

Furthermore, it is assumed that

εm � εg,

meaning subglacial discharge is a significantly larger source of specific mass flux

than melting. The scale for the thickness of the plume is much smaller than that for

the ice shelf (δ � 1) and the plume’s thickness is assumed not to change rapidly so
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that pressure gradients proportional to δ are neglected. Eddy diffusivity is neglected

(ν � 1) and, finally, the turbulent drag will be treated as negligible (µ � 1).

Examining the values in table 2.1, it can be seen that all of these assumptions are

reasonable, with the exception of those for εm � εg and µ� 1. As such, the solutions

to the resulting equations will only be quantitatively accurate near the grounding

line, since µ and εm/εg can be shown to be small over shorter scales (e.g., when

x0 ∼ 1 km, Dallaston et al., 2015). However, as it is the initialisation of channels

near the grounding line which is of interest, useful conclusions can still be drawn.

Using these assumptions and defining the buoyancy B ≡ DS∆ allows equa-

tions (2.10) and (2.11) to be simplified to

m = |U |, (2.13)

d

dx
(DU) = |U |

∣∣∣∣∣ dbdx
∣∣∣∣∣ , (2.14a)

d

dx
(DU2) = B

db

dx
, (2.14b)

d

dx
(BU) = 0, (2.14c)

d

dx
(DUT∆) = (β + 1)m. (2.14d)

If U is everywhere non-negative and b is monotonically increasing, then the absolute

values are no longer required. Note that temperature has now become uncoupled

from this system, meaning equation (2.14d) can henceforth be ignored when

calculating the evolution of the plume and ice shelf.

2.1.2 Steady-State Solution

A steady state identical to that of Dallaston et al. (2015) can be found for this

simplified plume model. The transformation

d

dx
= db

dx

d

dz
,

was used to convert the plume equations (2.14) to

d

dz
(DU) = U,

d

dz
(DU2) = B,

d

dz
(BU) = 0. (2.15)
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The latter-most of these can easily be seen to yield

B = Qg

U
(2.16)

by applying boundary conditions for DU and S∆ from equation (2.12). Using the

substitution Q = DU , defining M ≡ QU , and integrating the second equation

in (2.15) with respect to Q yields the solution

U =
Q1/3
g (ε3gU3

gQ
2
g − ε3gQ3

g +Q3)1/3

Q
, z−b(0) =

∫ Q/Qg

εg

Q2/3
g q(

ε3gU
3
g /Qg − ε3g + q3

)1/3dq.

(2.17)

In the case εg → 0 this reduces to

D = z − b(0) = (hg − h(x)) /r, U = Q1/3
g , B = Q2/3

g , (2.18)

indicating constant velocity and buoyancy, with a plume thickness that grows

linearly as ice shelf thickness is lost. This particular solution will not necessarily

satisfy the boundary conditions at the grounding line. However, it can be shown

that, for small but nonzero values of εg, the solution in equation (2.17) converges to

equation (2.18) outside of a small boundary layer in which the boundary conditions

are satisfied (Dallaston et al., 2015). As such, the limit εg → 0 will be taken and

the simpler set of equations used, with new boundary conditions

D(0) = 0, U(0) = Q1/3
g , B(0) = Q2/3

g . (2.19)

As Qg is scaled by Qg0, the value of which can be set arbitrarily, the steady-

state value can be set to 1. Using the solution for the plume, the ice shelf has

the following steady-state equations:

∂

∂x
(hu) = −λ, ∂

∂x

(
h
∂u

∂x

)
− γh∂h

∂x
= 0. (2.20)

Choosing boundary conditions hg = ug = 1 for the inflowing ice and h → 0

as ice melts away for x → X for the end of the ice shelf, these equations can

be integrated to show

X = 1
λ
, u =

√
1 + γ

2X −
γ

2X(1− x/X)2, h =

√√√√ (1− x/X)2

1 + γ
2X −

γ
2X(1− x/X)2 .

(2.21)
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Figure 2.1: The steady state velocity (dashed lines) and thickness (solid lines) profiles for
an ice shelf, as derived in equation (2.21). Different colours represent different combinations
of stretching (γ) and melting (λ) parameters, with the results for the combination of
parameters used in subsequent sections plotted in mauve. For all curves, r = 1.12.

This is the same steady state as found by Dallaston et al. (2015), except the

different definition of γ results in it being multiplied by a fraction of 1/2. A plot

of the velocity and thickness profile can be found in figure 2.1. Increasing λ (i.e.

increasing the melt rate) causes the shelf to melt away more quickly, thus decreasing

its length and leading to a steeper slope. Increasing γ (i.e. raising the stretching

rate) causes the slope of the ice to become more nonlinear; it thins more rapidly

near the grounding line and less rapidly near the end of the shelf. Increasing the

stretching also means that gravity-driven stretching is more effective at accelerating

the ice and leads to ice flow higher velocities.

2.2 Linearisation

In order to investigate how the ice shelf responds to seasonal variations in boundary

conditions, a linear perturbation analysis was performed. The method is somewhat

similar to that of Dallaston et al. (2015), but with an important distinction. While
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Dallaston et al. perturbed a one dimensional background state in the transverse

direction, here time-varying perturbations were applied to the steady background

state. This was done by prescribing that one or more of the boundary conditions

(here denoted schematically as C) representing, e.g., subglacial discharge or incoming

ice flux, varies according to

Cg = 1 + <
(
C̃ge

iωt
)

(2.22)

where 1 is the steady-state boundary value, ω is the angular frequency of the

perturbations, and C̃g is the complex perturbation amplitude. Approximate

linearised solutions were sought to equations (2.9) and (2.14) corresponding to

temporal oscillations about a steady state with the form:

[h, u,D, U,B] = [h̄(x), ū(x), D̄(x), Ū(x), B̄(x)]

+ <
(
[h̃(x), ũ(x), D̃(x), Ũ(x), B̃(x)]eiωt

)
, (2.23)

where terms with a bar are the steady state solution in equations (2.18) and (2.21),

while terms with a tilde represent the variations in x of the time-dependent

component of the solution. Substituting into equations (2.9) and (2.14) and

keeping only terms of first order in the perturbed variables, the linearized equations

were found to be

(h̃ū+ h̄ũ)′ + iωh̃ = −λŨ, (2.24a)

(h̃ū′ + h̄ũ′)′ − γ(h̄h̃)′ = 0, (2.24b)

D̄Ũ ′ + D̃′Ū = − Ū
r

∂h̃

∂x
, (2.24c)

D̄ŪŨ ′ + 2Ū ŨD̄′ = −B̃
r

∂h̄

∂x
, (2.24d)

B̄Ũ ′ + B̃′Ū = 0. (2.24e)

Note that these results make use of the relationship b = −h/r and the fact that

Ū2 = B̄ and Ū ′ = B̄′ = 0 in the background state. When deriving equation (2.24d),

two terms containing the gradient in h̃ cancel. Physically, this occurs because

any increase in the buoyancy force that results from a steeper slope is exactly
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compensated by additional entrainment of (denser) ambient water into the plume

as a result of the increased slope. This cancellation would not necessarily happen

if a different parameterisation of entrainment were used.

The position of the end of the ice shelf varies according to

X = X̄ + <
(
X̃eiωt

)
, (2.25)

where h̄(X̄) = 0 in the background state. Performing a Taylor expansion of h(X)

about X̄ and using h(X) = 0, it can be shown that

X̃ ≈ − h̃(X̄)
h̄′(X̄)

. (2.26)

There is a degeneracy in equation (2.24b) at the right boundary due to h̄ → 0

at x = X̄. This means that it is not necessary to specify a boundary condition

here; it is only necessary to ensure that the solution remains bounded and satisfies

equation (2.24b) at x = X̄. Using the relationship 2ū′ = γh̄ and h̄(X̄) = ū′(X̄) = 0,

this can be shown to be equivalent to requiring

ũ′(X̄) = 1
2γh̃(X̄). (2.27)

Note that D̃ is only present in equation (2.24c), meaning that it is uncoupled

from the rest of the system. As such, D̃ is not solved for directly, but can be

diagnosed from other variables.

2.3 Response to Varying Subglacial Discharge

This linear system can be used as a simple model with which to understand the

response of the ice shelf and plume to perturbations in the boundary conditions.

Variations in subglacial discharge affect both the velocity and buoyancy boundary

conditions of the plume. Recalling the results for U and B in equation (2.19) and

applying the binomial approximation, the linearised boundary conditions for Ũ and

B̃ were determined in the form of equation (2.22), with all other perturbations

assumed to be zero at the grounding line:

Ũ(0) = 1
3Q̃g, B̃(0) = 2

3Q̃g, D̃(0) = 0, h̃(0) = 0, ũ(0) = 0. (2.28)
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The first two conditions represent the time-varying changes to plume velocity

and buoyancy caused by perturbations to subglacial discharge. The remaining

conditions indicate that there are no changes to the ice flux or plume thick-

ness at the boundary. Equation (2.24) makes up a linear system with ampli-

tude controlled by the initiating flux Q̃g through the boundary conditions in

equation (2.28). This system was expressed as matrix operating on a vector

[h̃(x0), . . . , h̃(xN), ũ(x0), . . . , ũ(xN), Ũ(x0), . . . , Ũ(xN), B̃(x0), . . . , B̃(xN)], where xj
is the jth grid point at which the system is being solved. Chebyshev differentiation

matrices were used to represent the derivative operator when constructing the

matrix representing equation (2.24) (see § 3.1.1 for more details on this Chebyshev

pseudospectral approach). This required the grid to be made up of N+1 Chebyshev

collocation points spaced according to xj = cos(jπ/N), meaning they were clustered

near the boundaries. This has the pleasing side effect of placing high resolution

near the grounding line, where it is often most needed. The spatial structure of

perturbations was found by solving with Q̃g = 1. Note that the amplitudes of

perturbations for other values of Q̃g can be determined by a linear rescaling.

The solution consists of complex numbers, with the physical state of the system

at a given time being represented by the real component (figure 2.2). As such, both

the magnitude (figure 2.3) and phase (figure 2.4) are of interest. The perturbation

magnitudes show oscillatory variations in h̃ and a small drift in ũ. Any increase

(decrease) in the ice thickness caused by the perturbations would increase (decrease)

the ice stretching rate according to equation (2.9b). This would give rise to a positive

(negative) velocity perturbation, explaining the drift in ũ. In the phase plots it can

be seen that the phase of h̃ oscillates around π/2, while that of ũ asymptotically

approaches this value. The varying subglacial discharge Qg impacts the thickness

via the melt rate. Perturbations to the ice thickness accumulate whenever the

perturbation to the melt rate is less than zero, meaning that the peak in h̃ occurs a

quarter cycle after the minima in Q̃g. As it is changes to the ice thickness which

cause changes in ice velocity, the perturbations to the speed of the ice are also out

of phase with the varying subglacial discharge. Because of the parameterisation
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Figure 2.2: The real component of the perturbation to the ice thickness caused by
variations in subglacial discharge, h̃eiωt, at various times during the oscillatory period
τ = 2π/ω. Two effects can be observed here: the development of ripples which propagate
along the ice shelf, and overall oscillations in ice shelf thickness. Results in this and all
subsequent figures were computed with Q̃g = 1.

chosen for the entrainment, there is no feedback on Ũ or B̃ and they remain at the

boundary values set at the grounding line, meaning that they are exactly in phase

with variations in subglacial discharge (see bottom row of figure 2.4).

These changes combine to produce temporal oscillations in ice shelf thickness.

Examining the real component of h̃eiωt at various times during the seasonal cycle

(see figure 2.2) reveals two different responses to the seasonal forcing. One is

the formation of ripples in the ice shelf thickness, which propagate towards the

calving front over time (observed via inspection of animations of h(x, t)− h̄(x), not

illustrated here). The other is a global oscillation in the thickness of the ice shelf

over the course of a year as illustrated by shifts in the mean value of h̃ at given

times. Note that negative thickness perturbations here do not imply refreezing, but

instead correspond to modulation of melting about the background steady state.

The switch of h̃ from positive to negative is a result of individual ice parcels melting

more slowly as they are advected by the perturbed ice shelf than they melted in
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Figure 2.3: The magnitudes of the linear perturbations to the ice shelf caused by
variations in subglacial discharge. Oscillatory behaviour is clear in |h̃| and its effects can
be seen in the small ripples in |ũ|. Note, however, that the perturbations to the plume,
|Ũ | and |B̃|, do not change from the boundary values across the entire domain.
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Figure 2.4: The phases of the linear perturbations to the ice shelf caused by variations
in subglacial discharge. Variations can be seen in the phases of the ice shelf variables,
h̃ and ũ. The phase of h̃ oscillates about π/2 (black dotted line), while the phase of ũ
asymptotically approaches π/2. However, the phases of the plume variables, B̃ and Ũ ,
remain constant at zero.
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the base state. This can be confirmed by computing the Lagrangian derivative Dt

of the total thickness h = h̄ + h̃eiωt, following the mean flow. The result,

Dt(h) = ∂t(h̃eiωt) + ū∂x(h̄+ h̃eiωt) = iωh̃eiωt + ū(h̄+ h̃′eiωt)

can be confirmed to be greater than 0 at all times, indicating that no refreezing oc-

curs.

The basic structure of the ripples at first looks similar to the channels observed

by Bindschadler, Vaughan, et al. (2011). However, upon converting the amplitude of

these ripples to physical units for Q̃g = 1 (indicating 100% variations in discharge),

it becomes clear they are only of order 1 m in size, two orders of magnitude smaller

than the observed channels. Thus, this mechanism would be insufficient to explain

the observations of Bindschadler, Vaughan, et al. (2011). At most it might produce

initial structures from which a feedback mechanism could lead to growth into

full-sized channels. Nonlinear effects offer a potential source of feedback and this

possibility is explored in Chapters 3 and 4. It is also important to note that the

previously considered channelisation feedback (by which the plume preferentially

flows along perturbations, causing them to deepen; see § 1.3) was inherently 2-D

and thus could not be captured by this 1-D model. In this respect, the analysis

presented here is different from the 2-D one performed by Dallaston et al. (2015),

in which this feedback caused significant channel growth. The results nevertheless

provide insight into the response of an ice shelf to varying subglacial discharge and

the controlling physical mechanism is examined below.

2.3.1 Analysis of Physical Mechanism

In order to better understand the ice thickness oscillations seen in the previous

section, the magnitudes of individual components of the system in equation (2.24)

were plotted (see figure 2.5). The first plot (ice mass conservation) is the most

important part of this figure; it demonstrates that the iωh̃, ūh̃′, and −λŨ terms in

the continuity equation for ice are much larger than any of the remaining terms

(which represent stretching processes). Using the expression for the Lagrangian
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Ũ

|ω
h̃
|

|ū
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ū
′′ h̃
−
ū
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derivative D(h̃eiωt)/Dt following the background flow derived earlier, it can be seen

that the leading order balance in the conservation of ice mass in equation (2.24a) is

D

Dt
h̃eiωt ≈ −λŨeiωt. (2.29)

This indicates that the rate of change of thickness perturbations, following the

background flow, is set by melting.

This result has important implications and allows for an understanding of the

behaviour of the ice shelf as a whole. At any given time, all ice across the shelf

will be experiencing the same rate of change in perturbed thickness due to melting,

because the plume velocity Ũ and hence the melt rate are both uniform across the

shelf. The global oscillations in the ice shelf thickness are the logical consequence

of this spatially uniform melting pattern that oscillates in time. To see why the

ripples form, consider the time tg(x) when the parcel of ice located at x at time

t originally crossed the grounding line. The boundary condition sets h̃ = 0 for

the ice parcel at time tg. Integrating equation (2.29) reveals that the thickness

of this ice parcel at a later time t is then

h̃ ≈ iλŨ

ω

(
1− eiω(tg−t)

)
. (2.30)

Clearly, the perturbation to the ice shelf thickness oscillates with the time elapsed

since crossing the grounding line, t− tg. Given that ū is monotonic increasing with

x and ũ is small, tg is monotonic decreasing with x at a given time. As such, the

perturbed ice thickness also oscillates with x, but the non-uniformity of ū means

that the ripples are not a perfect sinusoid. Putting this in physical terms, ice which

crosses the grounding line when the discharge (and hence melting) is high will

experience more accumulated melting by the time it reaches the end of the ice shelf

than would ice which crosses the grounding line when the discharge is low. This

effect causes these two parcels of ice to have different thicknesses.

By tracking the position of individual peaks and troughs of the ripples over

time, the phase speed of the ripples can be determined. The speed of a given

peak/trough was found to be in near perfect agreement with the local velocity ū
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of the ice. This indicates that the ripples are being advected with the background

ice flow and are not moving relative to it, consistent with the mechanism for

their formation described above.

Figure 2.5b (ice momentum) shows that ū′h̃′ = h̄ũ′′. By substituting h̄ = 2ū′/γ,

simplifying, and then integrating in x, it can be seen that the relation γh̃ = 2ũ′ holds

for the perturbations. This indicates that, as in the steady state, perturbations

to stretching (ũ′) are driven by changing hydrostatic pressure (γh̃). Figure 2.5c

(the plume momentum balance) reveals −2h̄′Ū Ũ + h̄′B̃ = 0 exactly, meaning that

changing momentum fluxes within the plume are driven by changes to the buoyancy

flux from varying subglacial discharge. The balance in figure 2.5c (the plume

salt budget) is trivially satisfied as both Ũ and B̃ are constant. This is true

for Ũ because the chosen entrainment parameterisation causes an exact balance

between any increase in buoyancy forces with an increase in entrainment. Hence

the increase in buoyancy force is expended accelerating the entrained fluid to the

existing plume velocity. Similarly, any change to the salinity of the plume due

to entrainment is offset by the increased thickness of the plume, causing B̃ to

also be constant. This reflects that the ambient fluid has no buoyancy and thus

can’t change the buoyancy of the plume.

2.3.2 Sensitivity to Varying Parameters

By varying the driving frequency, ω, a dispersion relationship was obtained for

ω and the wavelength of the ripples. Initial attempts to determine a wavelength

using a Fourier transform proved troublesome because the spectrum lacked a clean

peak. The most effective way to estimate a representative wavelength ultimately

proved to be measuring the distance between the first peak and trough in <(h̃).

The spatially averaged value of ū, 〈ū〉, was also found over this range. These results

are plotted in figure 2.6, revealing the relationship

ω ≈ k〈ū〉, (2.31)

where k is the diagnosed wave-number. This is what would be expected given

that the wave-like thickness perturbations are transported via advection of the ice.
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Figure 2.6: A plot comparing the wave-number of the first (blue) and last (red) ripple in
the ice shelf with the driving frequency of variations in subglacial discharge (circles). Also
plotted is the relationship k = ω/〈ū〉 (blue/red lines for first/last ripples respectively).
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Figure 2.7: A contour plot of the real component of h̃ along the ice shelf at t = 0, for
different driving frequencies, ω, of the perturbations to the subglacial discharge.
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Figure 2.8: A contour plot of the real component of h̃ along an ice shelf forced by
variations in subglacial discharge, for a range of values of the parameter γ, which quantifies
stretching of the ice.

Note that the aforementioned technique revealed identical results when applied

to the last peak and trough on the ice shelf, where the ice velocity 〈ū〉 is larger

(also plotted in figure 2.6). The response of ripple amplitude to the frequency of

variations in subglacial discharge was also examined. Smaller values of the frequency

ω result in ripples with larger amplitudes, as there is more time for excess melting

to accumulate over each period (see figure 2.7), as predicted by equation (2.30).

Stretching of the ripples would occur due to divergence in the velocity. When

the driving force for viscous stretching, γ, is increased, it leads to a more significant

decrease in the amplitude and wave-number of ripples towards the end of the shelf

(as illustrated in figure 2.8). This is due to changes in the background flow ū; as can

be seen in figure 2.1, larger values of γ cause greater change in ū along the length

of the ice shelf, which in turn leads to greater stretching of the ripples and thus

reduced amplitude. The opposite is observed when γ is decreased, and when γ = 0

the amplitude and wave-number of the ripples stays constant across the entire shelf,

because no stretching occurs and there is no divergence of the velocity.
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Figure 2.9: A contour plot of the real component of h̃ along an ice shelf forced by
variations in subglacial discharge, for different values of the parameter λ, which quantifies
melting. Note that the length of the ice shelf is inversely proportional to λ, as seen in
equation (2.21). The large white gap in the graph arises due to the shelf being shorter for
larger values of λ.

Changing the dimensionless melt rate, λ, changes the length of the ice shelf (see

figure 2.9). The shelf shortens as λ increases, as was already known from equa-

tion (2.21) of the steady state solution. It was found that there was somewhat more

stretching in the low-melt cases, as there was more shelf on which stretching could

occur. Stronger melting increased the amplitude of the ripples, as the oscillations

in flow due to varying subglacial discharge result in greater variability of total melt.

By evaluating equation (2.30) at tg− t = −π/2ω and recalling that Ũ(x) = Ũ(0),

it was found that

h̃max ≈
λŨ

ω
(i− 1). (2.32)

This yields a slight overestimate of h̃ when the default value of γ = 2 is used (see

figure 2.10a) due to the presence of viscous stretching in the full solution, which is

neglected in the approximation in equation (2.29). Stretching reduces the amplitude

of the ripples compared to the amplitude due to the combination of advection
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Figure 2.10: The relationship between the maximum absolute value of the real ice
thickness perturbation, |<(h̃)| versus scaled melt rate, λ (blue solid line). Also plotted is
the relationship expected from equation (2.32) (red dashed line). In the case γ = 0, these
agree perfectly, meaning only the latter is actually visible.

and melt alone. If γ = 0, no stretching occurs and examining equation (2.24a)

reveals that equation (2.29) becomes exact. In this case, the numerical results

match equation (2.32) exactly (figure 2.10b).

2.4 Response to Varying Ice Flux

The flux of ice crossing the grounding line might also vary over time, on seasonal

or other timescales. This could be caused by processes such as basal slippage

causing the ice to flow faster. Periodic forms of such variability can be expressed

in the boundary conditions

Ũ(0) = 0, B̃(0) = 0, D̃(0) = 0, h̃(0) = 0, ũ(0) = ũg, (2.33)

so that the ice inflow velocity varies sinusoidally with all other variables fixed.

As mentioned earlier, the inflowing ice thickness is taken to be fixed and motion

of the grounding line is neglected.

The boundary conditions in equation (2.33) were applied to the linear system

in equation (2.24), which was solved with the parameter values in table 2.1. The

real components of the resulting thickness values at various times over the seasonal

cycle can be seen in figure 2.11. The phase and magnitude of the complex solution

for each variable can be found in figures 2.12 and 2.13, respectively. Changes
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Figure 2.11: The real component of the perturbation to the ice thickness, h̃eiωt, in
response to variations in ice flux across the grounding line at various times during the
oscillatory period τ = 2π/ω. Two effects can be observed here: the development of ripples
which propagate along the ice shelf and overall oscillations in ice shelf thickness.

to the ice thickness are an order of magnitude larger than those seen resulting

from variations in subglacial discharge with forcing of comparable dimensionless

magnitude at the grounding line.

The phase of h̃ rises from zero to π, before cycling to −π and more rapidly rising

to 0, at which point the cycle repeats. If regions where the phase arg(h̃) < 0 in the

upper left plot of figure 2.13 were ignored then there would be a spatial average value

of 〈arg(h̃)〉 = π/2, a quarter cycle offset from the forcing. However, in a minority of

locations arg(h̃) < 0, so its average value would actually be somewhat less than π/2,

but greater than 0. This suggests accumulation of excess thinning during certain

parts of the forcing period, similar to that seen for changes to subglacial discharge.

In this case, changes to the ice velocity are overwhelmingly driven by forcing

at the boundary, meaning that the perturbations resulting from changing ice

thickness are negligible. Thus, ũ stays largely in phase with the forcing. However,

it does drift somewhat and this is thought to result from the slight speedup of

the ice due to changes in stretching driven by thickness perturbations. As noted
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Figure 2.12: The magnitudes of the linear perturbations to the ice shelf when forced
with varying ice flux across the grounding line. Oscillatory behaviour is clear in |h̃| and
its effects can be seen in the small ripples in |ũ| relative to the velocity perturbation at
the grounding line, |ũg|. Note, however, that |Ũ | and |B̃| are unaffected.
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Figure 2.13: The phases of the linear perturbations to the ice shelf when forced with
varying ice flux across the grounding line. Variations can be seen in the phase of h̃,
whereby it increases to just above π (equivalent to just above −π) before returning to 0
and repeating the process. Changes to the phase of of ũ are small but indicate a slight
drift, while those of the plume variables, B̃ and Ũ , remain constant at zero.
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above, thickness perturbations are approximately a quarter cycle out of phase

with the velocity forcing. The small changes they make to velocity accumulate

along the length of the shelf and slightly increase the phase of ũ. Once again,

the compensation between varying slope accelerating the plume and entrainment

decelerating it means that the plume variables, U and B, do not change from the

boundary values which, in this case, are 0.

As with the case of varying subglacial discharge, examining the real component

of h̃eiωt at different times during the seasonal cycle (figure 2.11) reveals two modes

of behaviour: ripples inscribed in the ice and global oscillations of the ice thickness.

As noted above, the ripples are an order of magnitude larger than those caused by

subglacial discharge. An additional difference is in the form of the global oscillations.

Whereas those driven by subglacial discharge were of the same magnitude across

the entire domain of the ice, here the magnitude decays with x at a similar rate

to the magnitude of the ripples. It was again confirmed that, in the regions where

the ice appears to be thickening, no refreezing is required; a reduction in the rate

of melting is sufficient to explain the behaviour.

While these ripples are considerably larger than those caused by variations

in subglacial discharge (on the order of 10 m in physical units for 50% ice flux

variations), they remain an order of magnitude smaller than the channels observed

underneath Pine Island Glacier. Thus, this mechanism is also insufficient to explain

the observations of Bindschadler, Vaughan, et al. (2011).

2.4.1 Analysis of Physical Mechanisms

Repeating the analysis of § 2.3.1, the magnitude of each term of each of the

linearised shelf equations was plotted in figure 2.14. The most interesting of these

is figure 2.14a, representing ice continuity. This shows that the dominant terms

are iωh, ūh̃′, and ũh̄′ (note that there is no perturbation to the melt rate in this

case), giving the approximate relation

D

Dt
h̃eiωt ≈ −ũeiωtdh̄

dx
, (2.34)
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Ũ
|

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

x

0
.1

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

(b
) 
−
ū
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′ |

|h̄
ũ
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Ũ
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where D/Dt = ∂/∂t + ū∂/∂x is a Lagrangian derivative following the mean flow

(see § 2.3). Here it is worth noting that linearisation prevents the advection of

thickness perturbations from being affected by perturbations to the velocity. When

working on the assumption that ũ is small (as it was for variations in subglacial

discharge) this is a reasonable approximation. However, in this case it is changes

to the ice velocity which provide the forcing and ũ ≈ ũg is not small. The linear

analysis is only able to capture how velocity perturbations alter advection of the

mean state, and not how they advect the thickness perturbations.

Rearranging equation (2.9a) for steady state, recalling that Ū = 1, and making

use of the previously mentioned relationship γh̄ = 2ū′, it can be shown that

h̄′ = −2λ+ γh̄2

2ū . (2.35)

Substituting into equation (2.34) then yields

D

Dt
h̃eiωt ≈ ũ

ū

(
λ+ 1

2γh̄
2
)
eiωt. (2.36)

This indicates that changes to the ice thickness as it is advected down-shelf are

caused by the ice being exposed to melting (λ term) and stretching (γ term) for

shorter or longer periods when the ice is moving faster or slower.

Unlike in the case of subglacial discharge, the inclusion of the h̄ and ū terms

in the right hand side of the equation means that the rate of change of h̃ is not

constant across the domain for γ = 0. That makes it more difficult to analyse

the results. However, some insight can be gained by looking at the special case

of no stretching with γ = 0, implying ū = 1 and ũ = ũg for all x. Taking

the ice parcel located at x to have crossed the grounding line at time tg(x) and

integrating equation (2.36) then yields

h̃ = −iũλ
ω

(
1− eiω(tg−t)

)
. (2.37)

Thus the perturbation to ice shelf thickness oscillates with tg. Since ū = 1, tg = t−x,

it follows that h̃ oscillates in x. Physically, this means that a parcel of ice which

crosses the grounding line when the ice is moving slowly will take longer to reach a
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given location than an ice parcel which crosses the grounding line when the ice is

moving quickly. This means there will be more time for melt to accumulate on the

slow-moving ice, resulting in this ice parcel being thinner than the fast-moving one.

While such a tidy solution can not be found for γ 6= 0, examining the form

of the equation allows further insight. It is known that ū increases monotonically

with x, while h̄ decreases monotonically. Thus, the magnitude of the right hand

side of equation (2.36) declines with x. This explains why the size of the global

oscillations decreases along the length of the ice shelf. However, near the grounding

line, ū ≈ h̄ ≈ 1. The presence of the γh̄2/2 term on the right hand side of the

equation thus increases the magnitude considerably compared to the case without

stretching. Physically, this means that ice near the grounding line undergoes a

high level of thinning due to stretching. Ice parcels are highly sensitive to the

amount of time spent in that region due to perturbations to ice velocity. Thus,

varying ice flux inscribes a ripple much larger than those resulting from changes

to subglacial discharge. This ripple is then advected downstream and stretched

so that it has a larger wavelength and lower magnitude.

The dominant balances seen in figure 2.14b for the ice momentum budget

are the same as those for subglacial discharge in figure 2.5b. This means that

γh̃ = 2ũ′, as was the case in steady state, and that perturbations to stretching

(ũ′) are again driven by perturbations to hydrostatic pressure (γh̃). As the forcing

did not alter the values of Ũ or B̃, all terms in figures 2.14c and d are zero and

the plume equations are trivially satisfied.

2.4.2 Sensitivity to Varying Parameters

Varying the frequency, ω, revealed a dispersion relationship identical to that found

for subglacial discharge in equation (2.31). This corresponds to wave advection

by the background velocity, 〈ū〉, averaged over a ripple. As before, smaller values

of ω result in larger perturbations, as there is more time for excess exposure to

melting and stretching to accumulate (see figure 2.15).
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Figure 2.15: A contour plot of the real component of h̃ along the ice shelf at t = 0, for
different driving frequencies ω of the perturbations to the ice flux across the grounding
line.
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Figure 2.16: A contour plot of the real component of h̃ along an ice shelf driven by
variations in the ice flux across the grounding line, for a range of values of the parameter
γ, which quantifies stretching of the ice.
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Figure 2.17: A contour plot of the real component of h̃ along the ice shelf forced by
variations in the ice flux across the grounding line, for different values of the parameter λ,
which quantifies melting. Note that the length of the ice shelf is inversely proportional to
λ, as seen in equation (2.21). The large wight gap in the graph arises due to the shelf
being shorter for larger values of λ.

Once again, increasing the driving force for stretching (quantified in γ) leads

to a greater reduction in amplitude and wavenumber of ripples along the length

of the ice shelf relative to their values near the grounding line, as can be seen in

figure 2.16. The reduction in amplitude with x is also evident in figures 2.15 and 2.17.

Decreasing stretching has the opposite effect and when γ = 0 the amplitude and

wavelength of the ripples stays constant across the entire shelf. However, the

results differ from those for variations in subglacial discharge in that stronger

stretching results in larger amplitude ripples near the grounding line, as expected

from equation (2.36). The amplitude of the ripples near the calving front appears to

be relatively insensitive to the value of γ; although large γ results in larger ripples

near the grounding line, it also stretches them more, counteracting this effect.

The results of varying the dimensionless melt rate λ (figure 2.17) are broadly

similar to those in the case of subglacial discharge variations. Smaller λ results in

a longer ice shelf and thus allows more stretching to occur downstream. Stronger
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melting tends to increase the amplitude of the ripples while weaker melting decreases

them. This is expected from equation (2.36). Unlike for increased stretching, here

the increased amplitude can be seen across the entire ice shelf.

2.4.3 Fourier Analysis

The solution derived above can be calculated for any value of ω. Because it is the

solution to a linear equation, it is possible to construct solutions for any forcing

which can be expressed as a linear combination of sinusoids of different frequencies,

from a linear combination of the solutions at each frequency. If an arbitrary forcing

f(t) is applied to the ice shelf, a Fourier transform (see § 3.1.1 for more information)

can be used to decompose it into its component frequencies. The shelf can then

be solved at each frequency and these results added together, weighted by the

corresponding Fourier coefficient, to find the response of the shelf to f(t).

In reality, the variations in ice flux across the grounding line would not necessarily

be expected to be sinusoidal. A somewhat more plausible form would be that of

a square wave. This would represent the ice moving slowly for part of the year

and then suddenly speeding up. This might be caused by increased flow of water

underneath the grounded ice in summer, leading to reorganisation of the subglacial

drainage system and modified basal drag (as discussed by Schoof and Hewitt,

2013). The discontinuity of a square wave tends to cause a ringing phenomenon

when it is represented by a finite number of Fourier terms, so to avoid this the

transition from one state to another will be smoothed slightly. This is achieved

using a “smoothstep function” (Ebert et al., 2003):

f(t) =



0.5 t ≤ 0.15τ
0.5 + 6θ5

1 − 15θ4
1 + 10θ3

1 0.15τ < t < 0.35τ
1.5 0.35τ ≤ t ≥ 0.65τ
1.5− 6θ5

2 + 15θ4
2 − 10θ3

2 0.65τ < t < 0.85τ
0.5 0.85τ ≤ t,

(2.38)

where τ is used to indicate the period of the forcing, θ1 = 5(t/τ − 0.15), and

θ2 = 5(t/τ −0.65). The form of the smoothed square wave can be seen in figure 2.18.

Its values were found at 32 equispaced locations and this data used to compute
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Figure 2.18: The smoothed square wave forcing applied to the ice flux across the
grounding line.

a real Fourier transform. More samples resulted in Fourier modes of very high

driving frequency and the solution to the linear system could not be resolved in

these cases without an impractically high number of grid points.

Using the algorithm described above, the changes to ice thickness resulting from

the smoothed-square-wave perturbations to the ice flux were calculated and can be

found in the upper panel of figure 2.19. In many ways this result is similar to that

for sinusoidal forcing, in that there are both ripples inscribed in the ice shelf base

(the magnitude of which declines due to stretching) and global oscillations to the ice

thickness. However, the ripples now take the form of triangle waves (with slightly

rounded corners) and are of larger amplitude. The triangle form is the result of

integrating the smoothed square wave of the forcing. The increased magnitude is

the result of the forcing now placing the state of the system at a greater average

distance from the background state than would sinusoidal forcing.

Looking at the sum of the background state and the thickness perturbations

(figure 2.19, lower panel), the shelf exhibits a step-like structure whereby there are

rapid changes of thickness separated by regions of more slowly-changing basal draft.

Although on a much larger horizontal scale, this pattern of thickness variability

is reminiscent of the basal terraces observed by Dutrieux, Stewart, et al. (2014).

Though of similar vertical scale, the observed terraces occur on length-scales of

order 200 m, as compared to the wavelength of ∼ 3 km (near the grounding line)
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for the present calculation. This suggests that perhaps terraces could be formed

as the result of much higher frequency forcing. One potential source would be the

changes to ice speed on the spring-neap tidal cycle observed on some Antarctic ice

shelves (e.g. Rosier et al., 2017), although this forcing took the form of a sinusoid

rather than a square wave. Figure 2.15 indicates that a higher frequency would

produce steps of much smaller vertical size, meaning that some sort of feedback

mechanism would also be required for them to grow to match observations.
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2.5 Conclusions on Linear Results

The linear analysis described in this chapter showed that temporal oscillations in

glacier and plume boundary conditions can result in ripples being melted into the

base of an ice shelf. Oscillations in subglacial discharge result in global oscillations

to the glacier thickness and the melting ripples onto the base of the ice which

are then advected by the background ice flow. This was due to ice entering the

domain when the discharge (and hence melt rate) would experience less cumulative

melting than adjacent ice which entered the domain when discharge was high.

However, these ripples are extremely small: even oscillations with a magnitude

100% of the background subglacial discharge rate produce ripples of only ∼ 1 m in

size. The amplitude of the ripples grew in proportion to the melt rate. A higher

stretching rate did not change the amplitude of ripples near the grounding line,

but led to smaller amplitudes downstream. The local wave-number of a ripple

was found to be proportional to the forcing frequency divided by the spatially-

averaged background ice velocity in that location (corresponding to a dispersion

relation for advective propagation). Ripple amplitude was inversely proportional

to the forcing frequency, as longer-period forcing provided more time for excess

melt to accumulate and thicken the ice.

Oscillations in the ice flux also produced ripples, along with global oscillations

that were comparatively smaller than for varying subglacial discharge. Fast moving

ice has less time to accumulate thinning than slow-moving ice, resulting in the

former being thicker than the latter. When the ice flux underwent oscillations of

50% of the mean value the magnitude of these ripple perturbations was ∼ 10 m,

an order of magnitude larger than the subglacial discharge result. Higher melt

rates once again led to greater ripple amplitudes for forcing by varying ice flux,

although the effect was less pronounced than for the case with varying subglacial

discharge. Increasing the stretching rate led to larger ripples near the grounding

line and had little affect on the amplitude near the calving front. As was the case

with subglacial discharge forcing, the ripple amplitude varied inversely with forcing
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frequency and the wave-number was related to the frequency by the background

velocity averaged over the ripple.

Both mechanisms considered here were insufficient to produce channels of the

type and depth observed by Bindschadler, Vaughan, et al. (2011). The ripples altered

the slope of the ice shelf but were not able to produce overdeepenings. However,

they may provide an initial perturbation to the ice thickness which could be grown

into a channel by nonlinear effects; this possibility is investigated in the following

chapter. Even if there is no nonlinear feedback in ice melt and flow, the ripples

produced by the linear model would change the flexural stress within the ice shelf,

potentially promoting the formation of crevasses (Vaughan et al., 2012). The ripples

do bear some resemblance to the basal terraces observed by (Dutrieux, Stewart,

et al., 2014), particularly when the ripples are produced by square-wave forcing of

the ice flux. While the vertical scale of the ripples agrees well with observations,

the horizontal scale is an order of magnitude too large, however, when considering

an annual frequency of forcing. This leads to significatly smaller slopes separating

the terraces, as discussed in more detail in § 3.6. While higher frequency forcing

(e.g., due to the spring-neap tidal cycle, as described by Rosier et al., 2017) would

address the issue of the horizontal scale, it would also result in a smaller vertical

scale. Whilst the response to temporally varying forcing is capable of generating

terraces, an additional feedback mechanism would be required if this process is to

explain the observed quantitative properties of basal terraces on Pine Island Glacier.

The above model neglected the Coriolis force, meaning it only applies to relatively

narrow ice shelves in which the plume is unable to rotate significantly (such as

those confined to narrow fjords, e.g. Petermann Glacier). It used a relatively simple

parameterisation of ice melt, although the approximation is reasonable (Jenkins,

2011). A bigger issue is the lack of pressure-dependence in the melt rate. This was

necessary for the equations to be analytically tractable, but misses the tendency

for the highest melt rates to be near the grounding line. Two of the simplifying

assumptions made for the plume model in § 2.1.1 (negligible drag and freshwater flux

due to subglacial discharge being much larger than that due to melting) only apply
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on short length-scales near the grounding line. These assumptions are not required in

Chapter 3, allowing their importance to be evaluated. Finally, a linear model such as

this one only works well for small perturbations. Some of the perturbations applied

were large and thus neglecting nonlinear effects could have been inappropriate.
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ice shelf response to seasonal forcing, but found that this response was very small.

However, it is possible that the missing nonlinear effects could cause an instability

which would make perturbations to the ice shelf thickness grow. Furthermore,

the need to find an analytic solution for the shelf and plume constrained the

parameterisations which could be used. To overcome these limitations, this chapter

considers a set of fully nonlinear numerical simulations for the ice/plume geometry

used in Chapter 2 and illustrated in figure 1.1, subject to temporally varying

forcing at the grounding line.

3.1 Algorithms and Numerical Method

For the nonlinear model, equations (1.7) and (1.9) were nondimensionalised in a

manner more conducive for use with multiple choices of parameterisations than that

used in Chapter 2 and scales were chosen which better reflect the ice shelf of Pine

Island Glacier. The meanings and values of parameters can be found in table 3.1.

After rescaling, the dimensionless ice shelf equations now become

ht +∇ · (h~u) = −λm, (3.1a)

[2ηh (2ux + vy)]x + [ηh (uy + vx)]y − χ
(
h2
)
x

= 0, (3.1b)

[ηh (uy + vx)]x + [2ηh (ux + 2vy)]y − χ
(
h2
)
y

= 0. (3.1c)

In these equations h is the ice thickness (scaled by reference thickness h0), ~u = (u, v)

is the velocity at which the ice flows (scaled by reference u0), m is the rate at

which the ice shelf is melting (rescaled by reference m0, defined below), and η is

the rescaled ice viscosity. The dimensionless parameters

λ ≡ ρ0m0x0

ρih0u0
, χ ≡ ρigh0x0

2η0u0

(
1− ρi

ρ0

)
(3.2)

represent the ratio of melt versus influx of ice and the stretching rate (ratio

of gravitational stresses that drive stretching versus viscous stresses resisting),

respectively. In Chapter 2 the stretching rate was represented by γ, which had

half the value of χ. The ice density is ρi, while the reference density for ocean

water is ρ0. Otherwise, the subscript nought indicates a typical scale for a variable.
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The timescale for ice flow is given by t0 = x0/u0. Gravitational acceleration is g.

If viscosity is modelled as being Newtonian, then the dimensionless η is set to 1.

Alternatively, Glen’s Law can be nondimensionalised to take the form

η = 1
2ξD

1/n−1
2 , (3.3)

where D2 =
√
Di,jDi,j/2 is the second invariant of the strain rate and the di-

mensionless coefficient

ξ ≡ B

η0

(
u0

x0

)1/n−1
. (3.4)

Typically, n = 3 (Schoof and Hewitt, 2013) and this value will be used through-

out this chapter.

The plume equations are scaled according to

U2
0 = h0g∆ρ

ρ0
, e0 = m0 = γT0 = γS0 = D0U0

x0
,

∆T0 = Γ∗Tx0

D0
(Ta − Tm), ∆S0 = c0ρ0∆T0(Sa − Sm)

ρiL
.

(3.5)

As before, the subscript nought indicates the typical scale for a variable. The

exception to this is ρ0, which is a representative value for the water density. Because

the density difference is used in the plume equation and this difference is quite small,

it was found useful to adopt a different scale, ∆ρ, to use when nondimensionalising

ρa − ρ, ρx, and ρy. Similarly, temperature and salinity were scaled according to

typical differences rather than by their absolute values. An arbitrary point could be

set to zero for these two variables and it proved convenient to choose the ambient

values as the zero-point. The basal depth, b, is scaled by h0. Note that the scale

m0 does not correspond to typical physical values of melting but is chosen because

it is convenient to have it equal to those of the other variables; as a result, m� 1.
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Table 3.1: Typical scales and values for ice shelf and plume properties, along with the
values of non-dimensional parameters which result. “Repr. val.” stands for “representative
value”. [J11] refers to Jenkins (2011), [B11] to Bindschadler, Vaughan, et al. (2011), [D15]
to Dallaston et al. (2015), [J91] to Jenkins (1991), [J96] to Jacobs, Hellmer, et al. (1996),
[K87] to Kochergin (1987), and [S13] to Sergienko (2013). Scales in the third column
are chosen to be comparable to the conditions of the PIG ice shelf and come from the
indicated source. Where a scaling is unconstrained it was chosen to provide convenient
parameter values (e.g. x0 fixed by χ). Due to an error, ζ2 is a factor of r too large.

Description Value Source
ρ0 Reference water density 1030 kg m−3 Common
ρi Ice density 916 kg m−3 Common
g Acceleration due to gravity 9.8 m s−2 Common
L Latent heat of fusion 3.35× 105 J kg−1 Common
c Specific heat of water 3.98× 103 J kg−1 K−1 Common
E0 Entrainment coefficient (J91) 0.036 [J11]
cL Entrainment coefficient (K87) 0.1059 § 3.3.2
βS Haline contraction coefficient 7.86× 10−4 psu−1 [J11]
βT Thermal contraction coefficient 3.87× 10−5 K−1 [J11]
Cd Turbulent drag coefficient 2.5× 10−3 [J11]
Γ∗T Thermal transfer coefficient 5.7× 10−5 [D15]
κ Turbulent diffusivity/viscosity 10–100 m2 s−1 Repr. val.
η0 Ice viscosity 2.6× 1013 Pa s Repr. val.
B Glen’s Law coefficient 1.6× 108 Pa s1/3 [S13]
Sg Subglacial discharge salinity 0 psu Repr. val.
Sa Ambient salinity 34.6 psu [J96]

Ta − Tm Thermal Forcing 2◦C [J96]
u0 Ice velocity scale 2.5 km yr−1 [B11]
h0 Ice thickness scale 1200 m [B11]
x0 Length scale 13.8 km (3.2)
t0 Time scale 5.5 yr (3.5)
m0 Melt scale 1.94× 104 m yr−1 (3.5)
X Dimensionless domain length 6 [B11]
Qg Subglacial discharge 8.5× 10−3 m2 s−1 Repr. val.
D0 Plume thickness scale 43.2 m (3.5)
U0 Plume velocity scale 0.196 m s−1 (3.5)

∆T0 Temperature scale 0.0364 K (3.5)
∆S0 Salinity scale 0.0170 psu (3.5)
∆ρ Density variation scale 3.38× 10−3 kg m−3 (3.7)
χ Dimensionless stretching rate 4 (3.2)
ξ Dimensionless Glen’s coefficient 1.919 (3.4)
λ Dimensionless melt rate 100 (3.2)
r Density ratio 1.12 (3.7)
ν Dimensionless eddy diffusivity 3.69× 10−2 (3.7)
µ Dimensionless drag coefficient 0.799 (3.7)
δ Buoyancy correction 0.036 (3.7)
K Dimensionless K87 coefficient 3.58 (3.10)
ζ1 Dimensionless transfer coefficient 0.0182 (3.12)
ζ2 Dimensionless melt coefficient 4.86× 10−4 (3.12)
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This yields the dimensionless system

∇ ·
(
D~U

)
= e+m, (3.6a)

∇ ·
(
D~UU

)
= D(ρa − ρ) (bx − δDx) + δD2

2 ρx + ν∇ · (D∇U)− µ|~U |U, (3.6b)

∇ ·
(
D~UV

)
= D(ρa − ρ) (by − δDy) + δD2

2 ρy + ν∇ · (D∇V )− µ|~U |V, (3.6c)

∇ ·
(
D~US

)
= eSa + ν∇ · (D∇S) +mSm − γS(S − Sm), (3.6d)

∇ ·
(
D~UT

)
= eTa + ν∇ · (D∇T ) +mTm − γT (T − Tm). (3.6e)

Unlike in Chapter 2, these equations were constructed without making any assump-

tions about the form of m, e, or ρ. For this reason different, more generic, scales

are adopted for these values. The velocity scale depends on the density scale, rather

than on buoyancy input from subglacial discharge. Instead of scaling the salinity

in terms of buoyancy input, its scale is based the level of melt-water input, which

is the dominant source of salinity forcing across most of the domain.

The dimensionless parameters

δ ≡ D0

h0
, r = ρ0

ρi
, ν ≡ κ

x0U0
, µ ≡ Cdx0

D0
(3.7)

represent the dimensionless buoyancy correction, density ratio, turbulent eddy

diffusivity, and turbulent drag coefficient, respectively. The latter two depend

on the dimensional eddy diffusivity κ, which is assumed to be equal to the eddy

viscosity (as done by, e.g.: Sergienko, 2013; Dallaston et al., 2015), and the unscaled

turbulent drag coefficient Cd.

The simple entrainment parameterisation of Jenkins (1991) in equation (1.11)

can be nondimensionalised to have the form

e = E0

δ
|∇b||~U |, (3.8)

suggesting it is convenient to take δ = E0 (or equivalently, D0 = E0h) as in

Chapter 2. The more complex parameterisation of Kochergin (1987) in equa-

tion (1.12) nondimensionalises to

e = K

Sm

√
|~U |2 + δ(ρa − ρ)D

Sm
, (3.9)
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with the dimensionless coefficient

K = c2
Lx0

D0
. (3.10)

The turbulent Schmidt number, Sm, depends on the Richardson number as described

in equation (1.13). With these scales, the Richardson number is given by Ri =

δ(ρa − ρ)D/|~U |2. The melt rate parameterisation in equation (2.1), taken from

Dallaston et al. (2015), has the dimensionless form

m = ζ1ζ2|~U |(T − Tm), (3.11)

where

ζ1 = Γ∗Tx0

D0
, ζ2 = c∆T0

L
. (3.12)

Due to the low efficiency of thermal transfer to the ice shelf, compared to the

high rate of entrainment, ζ1 � 1. The large latent heat of ice results in ζ2 � 1,

as well. Together, these results mean m � e ∼ 1, so that the mass gain by

meltwater input is much smaller than by entrainment. It can be seen that the

thermal transfer coefficient nondimensionalises to give

γT = ζ1|~U |. (3.13)

A numerical scheme was developed to solve equations (3.1) and (3.6), which are

coupled together by the melt rate and the slope of the ice shelf base. In order to

make the problem computationally simpler and to maximise the potential for code

reuse, it was decided to separate it into the two components: shelf and plume. For

an initial ice shelf thickness profile, the state of the plume is solved for. This provides

the melt rate, which is then used to integrate the state of the ice shelf forward one

time step. This process is repeated each time step. Details of the numerical methods

used to integrate the ice shelf and solve for the plume state are provided below.
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3.1.1 Spatial Discretisation

The shelf/plume simulation requires computing various derivatives, for which a

pseudospectral method is used. An introduction to this technique is provided below;

for a more thorough explanation, see Trefethen (2000). Spectral methods provide

a fast and accurate way to numerically differentiate discrete data. While more

computationally expensive than finite difference methods for the same number of

grid points, spectral methods give exponential convergence and thus often require

significantly fewer grid points to achieve the same level of accuracy. Numerical

accuracy is of particular importance here, as the purpose of running simulations

is to test the stability of an ice-shelf to potentially small perturbations. Spectral

methdos are often used for problems with periodic boundary conditions, where a

Fourier series, f(θ) = ∑
k ake

ikθ, can be used to interpolate between grid points. If

the grid points are evenly spaced then the coefficients ak can easily be calculated

with a discrete Fourier transform. Typically this would be done using the highly

efficient fast Fourier transform (FFT) algorithm (Cooley and Tukey, 1965), which

requires O(N logN) operations for N grid-points. The derivative is then f ′(θ) =∑
k ikake

ikθ and an inverse FFT can be used to convert the new coefficients ikak
to the values of f ′ at each grid point.

However, the boundary conditions for equations (3.1) and (3.6) are not periodic.

Instead, say there is an interpolant F (x) for data mapped onto −1 ≤ x ≤ 1 using

a linear coordinate rescaling. To apply a spectral method, it is necessary to map

the interpolant to a function f(θ), 0 ≤ θ < 2π, where x = cos θ. Regardless of

the boundary conditions on F , f will be periodic and even in θ and can thus

be differentiated as before. The results can then be mapped back onto the grid

points in the x-domain. By choosing x grid points to be Chebyshev collocation

points, defined below, the corresponding grid points in θ will be equally spaced

and an FFT can be used to find the Fourier coefficients. This is known as the

Chebyshev pseudospectral method (Trefethen, 2000). If N + 1 Chebyshev collocation
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points are needed, their positions are given by

xj = cos(jπ/N), j = 0, . . . , N. (3.14)

This approach provides uneven spacing of points in x, with a clustering of resolution

near the domain boundaries, and hence is also well suited to capture rapid variation

near the grounding line.

Following Trefethen (2000), the practical algorithm used to differentiate discrete

data vj = v(xj), for 0 ≤ j ≤ N , corresponding to values at Chebyshev collocation

nodes x0 = 1, . . . , xN = −1, is as follows:

1. Take a type-I discrete cosine transform of the data, to determine the Fourier

coefficients

v̂j = π

N

[
v0 + vN cos(πj) + 2

N−1∑
k=1

vk cos
(
πjk

N − 1

)]
.

2. Let ŵj = −jv̂j for 1 ≤ j ≤ N − 1 and ŵN = 0.

3. Take a type-I discrete sine transform of ŵj from j = 1 to j = N − 1, yielding

wj = 1
π

N−1∑
k=1

ŵk sin
(
πkj

N

)
.

4. Compute

v′j =


1

2π

[
N2

2 v̂N +∑N−1
k=1 k

2v̂k
]
, j = 0

−wj√
1−x2

j

, 1 ≤ j ≤ N − 1
1

2π

[
(−1)N+1N2

2 v̂N +∑N−1
k=1 (−1)k+1k2v̂k

]
, j = N

Discrete sine and cosine transforms are variations of the discrete Fourier transform

which take advantage of data being real and either even or odd. The FFTW3

package (Frigo and Johnson, 2005) was used to compute these. A more rigorous and

detailed explanation of the above methods for periodic and non-periodic functions

is provided by Trefethen (2000) in chapters 3 and 8, respectively.

If a domain other than −1 ≤ x ≤ 1 is desired then the Collocation points

can be scaled and offset as necessary, giving a coordinate system x∗j . The above
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differentiation algorithm is applied unchanged, except that the result is scaled

by twice the inverse of the domain-width.

While the above method was used for the nonlinear simulations, it is also possible

to construct a matrix which, when applied to a vector v = [v0, v1, . . . , vN ]T (using

the same definition of vj as above) performs the pseudospectral differentiation. Such

a matrix can be thought of as generalising a finite difference matrix to the case

where the order of the finite difference is the same as the number of data points.

The N ×N differentiation matrix ∆ has the form (Trefethen, 2000, chapter 6)

∆00 = 2N2 + 1
6 , ∆NN = −2N2 + 1

6 (3.15)

∆jj = xj
2(1− x2

j)
, j = 1, . . . , N − 1 (3.16)

∆ij = ci(−1)i+j

cj(xi − xj)
, 1 6= j, i, j = 0, . . . , N, (3.17)

where

ci =

2 i = 0, N
1 otherwise

.

Matrices of this form were used to solve the linear equations in Chapter 2. However,

the FFT approach is preferred for the nonlinear problem as it is more computationally

efficient, requiring only O(N logN) operations to calculate a derivative compared

to O(N2) with the matrix method.

3.1.2 Implicit Integration of the Ice Shelf

Simulating the evolution the ice shelf mass balance using equation (3.1a) requires a

time-stepping scheme. In order to allow numerical stability with large time steps, a

semi-implicit method is used. This works by defining the residual operator

f(hn) = hn − hn−1

∆t + ∂

∂x
(hnun(hn)) + λmn−1 (3.18)

where the subscript n indicates the value at the time step being solved for, while

subscript n− 1 indicates the value at the previous time step. This is a semi-implicit

scheme (rather than fully implicit) because melt rate mn−1 is used from the previous

time step, rather using mn from the current time step. In this equation, hn and un
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represent vectors of thickness and velocity values at each grid point at time step

n, while hn−1 is a vector of thickness values at the previous time step and ∂/∂x is

evaluated using the Chebyshev differentiation procedure described in § 3.1.1. This

is a nonlinear system and can be solved using Newton’s method, where the root

is determined iteratively by solving the linear equation

Jδskn = −f(skn). (3.19)

Here, sn = hn is the current value of the ice thickness, J is the Jacobian of f ,

and the new iterate sk+1
n = skn + δskn.

In order to avoid having to evaluate the Jacobian of this system, a Jacobian-free

Newton-Krylov method (Knoll and Keyes, 2004) is used. This solves the linear

equation (3.19) iteratively via a Krylov method which only requires the product

of the Jacobian with the iterate, and not the actual Jacobian itself. This product

is approximated as a finite difference:

Jv ≈ f(s + εv)− f(s)
ε

. (3.20)

The NITSOL implementation (Pernice and Walker, 1998) of a Newton-Krylov solver

was chosen, as it is very flexible and written in Fortran, which was the language

other portions of the code were to be implemented with.

The spectral discretisation used here corresponds to dense matrices, making

equation (3.19) very poorly conditioned. As a result, the Krylov solvers in NITSOL

were unable to converge on a solution without a preconditioner. Even with relatively-

sparse matrices, preconditioners are often needed for iterative methods (e.g. Pernice

and Walker, 1998; Knoll and Keyes, 2004). A right preconditioner, P−1, is chosen

so that the modified problem (JP−1)q = −f(s) is well-conditioned and can be

solved for q. It is then easy to find s using P δs = q ⇒ δs = P−1q. A good

preconditioner will have P−1 ≈ J−1, so that JP−1 ≈ I to a decent approximation.

A tradeoff must be made between a preconditioner which is a sufficiently good

approximation of J−1 to be useful and one which is not too expensive or unstable
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to apply (e.g. P−1 = J−1 would be a perfect preconditioner but constructing it is

of equal difficulty to solving the original, unpreconditioned problem).

The Jacobian of equation (3.18) can be expressed as

J = 1
∆t +Dxu, (3.21)

where we define DxA ≡ ∂A/∂x+ A∆x, and ∆x is the differential operator in the

x-direction. Although ∆x will be a dense matrix when using a spectral method, it

can be approximated as a sparse finite difference operator, as proposed by Orszag

(1980). In this case ∆x, and thus also Dx, are tridiagonal matrices. This means

that the finite difference form of the Jacobian can be “inverted” simply by solving

the tridiagonal system, which can be done efficiently using a routine in LAPACK

(Anderson et al., 1999). This proved effective at preconditioning the Krylov solver in

NITSOL, whilst maintaining the accuracy of the underlying pseudospectral method.

The un(hn) term in equation (3.18) can itself be found by solving a nonlinear

system, this time with the form

f(un) = ∂

∂x

(
4ηnhn

∂un
∂x

)
− χ∂h

2
n

∂x
. (3.22)

This has a Jacobian

J = Dx(4ηh)∆x. (3.23)

Every time a new residual is calculated using equation (3.18), equation (3.22) is

solved iteratively using NITSOL.

It is also possible to construct a nonlinear system which takes both hn and un
as arguments and solve for both simultaneously. While this avoids the need to

repeatedly solve for un, it proved to be much less stable and tended to require

smaller time-steps in order to prevent failure. As such, the approach outlined above

proved to be computationally cheaper overall.

Of the three linear solvers provided with NITSOL, only GMRES proved reliable,

with the BiCGSTAB and TFQMR solvers typically failing. Consult Pernice and

Walker (1998) for more details on these routines. It was also found that the
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“backtracking” globalisation used in NITSOL, which is meant to prevent the solution

from starting to diverge, had a tendency to make the solver get trapped in local

minima for this problem. As such, it was turned off and this was found to greatly

improve the robustness of the nonlinear solver.

3.1.3 Solving for the Quasistatic Plume

For a one-dimensional domain, equations (3.6) become second order ODEs. If

boundary conditions are applied only at the grounding line then this means that

they can be solved using initial value problem methods such as Runge-Kutta

integration. However, the diffusive terms in equations (3.6b)–(3.6e) require two

boundary conditions each for velocity, salinity, and temperature. The logical choice

would use Dirichlet conditions at the grounding line and outflow conditions (setting

the first derivative to zero) at the calving front. This turns equation (3.6) into a

boundary value problem and makes it more difficult to solve.

One strategy for solving boundary value problems such as this is the shooting

method (see, e.g., Press et al., 2007). With this technique, unknown boundary

values are guessed at the grounding line to create an initial value problem. This

initial value problem is then integrated and the difference between the values at

the calving front and the required boundary conditions there is noted. A nonlinear

solver is then used to change the guesses at the grounding line in order to get the

correct boundary conditions at the calving front. However, the diffusion term in

these equations leads to solutions involving exponential growth. If the guesses of

grounding line conditions are not sufficiently good then these exponentials can

lead to overflow and the failure of the solver. It was found that this made the

shooting method unsuitable in practice.

A relaxation method was also tried, wherein a time-dependent version of the

plume model was evolved forward in time (using an explicit method) until it reached

steady state. However, the weakness of the diffusion coefficient and nearly hyperbolic

character of the time-dependent plume model means that significant waves often

arise, and considerable time is needed to reach a steady state.



3. Response of an Ice Shelf to Nonlinear Forcing 89

Finally, an approach called the quasilinearisation method (Mandelzweig and

Tabakin, 2001), or QLM, was tried. This is a technique, based on Newton’s method,

for solving boundary value problems. Though Mandelzweig and Tabakin (2001)

present the technique for single-variable problems, it is trivial to generalise it to

the multivariate case. Consider the differential equation

L(n)s(x) = f [s(x), s(1)(x), . . . , s(n−1)(x), x], s ∈ Rm, (3.24)

being solved on the domain [0, b]. Here, L(n) is an nth order linear differential

operator, f is a nonlinear function, and s(i) is the ith derivative of s. Boundary

conditions are specified by

gk[s(0), s(1)(0), . . . , s(n−1)(0)] = 0, k = 1, . . . , l;

gk[s(b), s(1)(b), . . . , s(n−1)(b)] = 0, k = l + 1, . . . ,mn; (3.25)

where g1, g2, . . . , gmn are (potentially) nonlinear functions. This can be solved

iteratively for the r + 1 iterate sr+1 using the equation

L(n)sr+1(x) = f [sr(x), s(1)
r (x), . . . , sn−1

r (x), x]+
n−1∑
i=0

fs(i) [sr(x), s(1)
r (x), . . . , sn−1

r (x), x]
[
s

(i)
r+1(x)− s(i)

r (x)
]
, (3.26)

with boundary conditions for each iteration set by

n−1∑
i=0

gk,s(s) [sr(0), s(1)
r (0), . . . , sn−1

r (0), x] · [s(i)
r+1(0)− s(i)

r (0)] = 0, k = 1, . . . , l;

n−1∑
i=0

gk,s(i) [sr(b), s(1)
r (b), . . . , sn−1

r (b), x] · [s(i)
r+1(b)− s(i)

r (b)] = 0, k = l + 1, . . . ,mn.

(3.27)

In these equations, fs(i) = ∂f/∂s(i) (i.e. the Jacobian of f) and gk,s(i) = ∂gk/∂s(i).

Note that, for linear boundary conditions, equation (3.27) reduces to the boundary

conditions being constant across iterations. This technique can be proven to give

quadratic convergence to the solution given certain easily-satisfied assumptions

(see Mandelzweig and Tabakin, 2001, for details). Furthermore, convergence is

often monotonic.
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To apply this method to the plume model, new variables U ′ = Ux, V ′ = Vx,

S ′ = Sx, and T ′ = Tx were introduced, where a subscript x denotes a derivative.

Equation (3.6a) was rewritten so that the left-hand-side is just Dx, while equa-

tions (3.6b)–(3.6e) were rewritten such that the left hand sides are U ′x, V ′x, etc. This

allowed a linear operator to be constructed with the form

L[D,U, U ′, S, S ′, T, T ′]T =
[
dD

dx
,
dU

dx
− U ′, dU

′

dx
,
dS

dx
− S ′, dS

′

dx
,
dT

dx
− T ′, dT

′

dx

]T
.

(3.28)

The nonlinear operator is zero for U , S, and T and elsewhere consists of the

right-hand-side of the rearranged version of equation (3.6).

In order to find successive iterates, a linear equation must be solved, consisting

of the linear operator and the Jacobian fs(i) = ∂f/∂s(i). It is neither feasible nor

efficient to explicitly evaluate the Jacobian, especially if the solver is to be agnostic

to parameterisation choices. The iterative GMRES solver implemented in NITSOL

(very slightly modified to accept an initial guess of the solution) was used because it

can work knowing only the product of the Jacobian and the current iterate. Initially

these products were calculated using the finite-difference approximation to the

Jacobian in equation (3.20). While this was sufficiently accurate to run many simple

simulations, it proved unreliable when the plume undergoes a sudden change or when

nonlinear parameterisations are used. To address this, automatic differentiation

(Neidinger, 2010) was applied instead and this proved far more robust. This

calculated the product of the Jacobian with a vector (i.e., the directional derivative)

via operator overloading. See Appendix A for further details of the implementation.

All results displayed in this chapter were obtained using automatic differentiation.

The GMRES algorithm required preconditioning to work properly, as was the case

with the ice shelf solver. The preconditioner was chosen to be P−1 = L−1, equivalent

to finding the inverse of equation (3.28), which involves integration of the derivatives.

Spectral integration was performed by reversing the steps for spectral differentiation

described on page 84. A similarly modified version of the NITSOL implementation

of the biconjugate gradient stabilised method (BiCGSTAB) was also found to work

when solving the preconditioned linear system, but it proved less robust.
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When solving the linear equation at each iteration, the initial guess was the

previous iterate. The GMRES solver was expected to reduce the error in the linear

system by a factor ε compared to the initial guess. It was found that gradually

decreasing the magnitude of ε over each nonlinear iteration, the final answer could

be determined with a residual norm smaller than 7N ×10−9, where N is the number

of grid points used and 7 indicates the number of plume variables being solved for.

The QLM proved to be highly efficient, typically converging within a few iterations

of equations (3.26) and (3.27), although up to a few hundred iterations would often

be needed by the GMRES solver to perform the necessary intermediate linear solves.

3.1.4 Testing and Benchmarking
3.1.4.1 Ice Shelf

After programming the nonlinear solver using the algorithms described in the

previous section, various tests were run to ensure that it would give the correct results.

First, the ice shelf component was tested with a prescribed melt rate matching that

of the analytic steady state solution in § 2.1. It was confirmed that when the ice

shelf was initialised to the matching steady state it remained there. Initialising the

ice shelf to a wedge-shape, it was found to evolve to the correct steady state.

As a test of the time-stepping for transient evolution, the 1-D shelf equations

were analysed for the special case where there is no stretching (χ = 0) and the

melt rate m is constant in t and x. The velocity of the ice at the grounding line

(and thus across the entire shelf, since there is no stretching) was prescribed to be

u(t) = ū + ũ0 sin(ωt). With these assumptions, equation (3.1a) becomes

∂h

∂t
− u(t)∂h

∂x
= −λm, (3.29)

which can be solved using the method of characteristics. In this method, a

Lagrangian coordinate s is introduced such that the thickness of a parcel of

ice following the trajectory x(s), t(s) evolves according to h(s). It can then

be shown that

dx

ds
= u(t), dt

ds
= 1, dh

ds
= −λm.
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With the initial conditions x = σ, t = 0, and h = h0(σ) these equations can be

integrated to yield the transient solution

h = h0(σ)− λmt, (3.30)

where σ can be computed from x and t according to σ = x− ūt+ ũ/ω [cos(ωt)− 1].

This solution applies to ice starting in the domain, but a different form is needed

for ice parcels crossing the grounding line at time t = tg > 0. Then σ < 0 and

the initial conditions are set to x = 0 and h = 1. In this case the method of

characteristics provides the implicit solution

h− λmũ0

ωū
cos

[
ωt+ ω

λm
(h− 1)

]
= 1− λm

ū

[
x+ ũ0

ω
cos(ωt)

]
. (3.31)

This algebraic equation can easily be solved numerically for h using a bisection-

secant method, such as that of Brent (1973, Chapter 4). Possible solutions can

be bracketed using the physical insight that h ∈ [0, 1].

These solutions provide a way to test accuracy of the ice shelf solver in time

and space. However, the fact the melt rate is constant means that the semi-implicit

approach to time-discretisation is not fully tested. Using the same technique, a

solution can be found for melt rate m = mtt, where mt is a constant rate of change

in the melt. For σ > 0 (calculated as before) the transient solution applies:

h = h0(σ)− λmt

2 t2. (3.32)

Elsewhere, the solution is again given implicitly:

h− 1 + λmt(tg + s/2)s = 0 (3.33)

where the time since the ice parcel crossed the grounding line and the time at

which it crossed the grounding line are given by

s = x

ū
+ ũ0

ωū
(cos(ωt)− cos(ωtg)) , tg =

√
2(h− 1)
λmt

+ t2,

respectively. Bracketing this solution is slightly more difficult than in the constant-

melt case, as if the value of h is too small it will result in an imaginary value of tg.
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As such, the lower bound was set to the value of h = 1−λmtt
2/2, which corresponds

to tg = 0 at the time being solved for, plus some small value ε to ensure that floating

point error does not become an issue. The upper bound remains set to 1.

A series of simulations were run under these conditions using different time steps.

Parameter values ū = 1, ũ0 = 0.5, λ = 100, mt = 2 × 10−4, and ω = 34.56 were

chosen, corresponding to the scale choices described in the next section. A domain

of x ∈ [0, 6] was used, with a wedge-shaped initial ice profile h0(x) = 1 − 0.1x.

All simulations used 300 grid-points.

Figure 3.1 shows the results of two simulations at time t = 5, with time-steps

fixed at 10−2 and 10−4, compared to the analytical solution given in equations (3.32)

and (3.33). Both simulations give reasonably good agreement with the large-scale

features of the solution, although there is more significant error at the transition to

the transient solution. The numerical solutions tend to smooth out those sorts of

discontinuities, although reducing the time-step helps with this considerably. The

main issue, however, is how the numerical solution handles the ripples which form

due to the seasonal forcing of shelf velocity. These are very small in magnitude,

meaning that very high levels of accuracy are demanded to resolve them. Even the

simulation with the smaller time-step shows signs of diffusion, causing the ripples

to loose amplitude as they move across the domain.

This can be seen more clearly in figure 3.2, which is produced at t = 10 when

the transient feature has been advected out of the domain. All results in this

plot are differences between the time-dependent solution h with ũ0 = 0.5 and

the steady-state result h̄ of equation (3.33) for ũ0 = 0, which corresponds to the

unforced background state. In order to make the plot easier to read, the domain

only goes to x = 1.5. As can be seen, the amplitude of the ripples decays, indicating

the presence of some numerical diffusion. Smaller time-steps result in less of this

diffusion. The root-mean-square and the maximum error at times t = 5 and t = 10

were found for a range of time-steps (figure 3.3). The error declines fairly slowly

with the time-step. Given that high accuracy is needed for these simulations, in
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Figure 3.1: Comparison of the analytic solution given in equations (3.32) and (3.33)
with numerical solutions at t = 5, using 300 grid-points. These are plotted alongside
each other in the top panel, while the bottom panel displays the differences between the
numerical and analytical solutions. Insets offer a zoomed-in view of the error, with values
at individual grid-points indicated by an ×. Parameter values ū = 1, ũ0 = 0.5, λ = 100,
mt = 2× 10−4, and ω = 34.56 were chosen, corresponding to the scale choices described
in the next section.
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Figure 3.2: Comparison of the analytic solution given in equation (3.33) with numerical
solutions at t = 10, using 300 grid-points. In all cases, the plot shows the difference
between the solution h and the unforced background state h̄ corresponding to the solution
to equation (3.33) for ũ0 = 0. Only the first quarter of the domain is displayed, to make
the plot easier to read; decay continues to contribute downstream. Parameter values
ū = 1, ũ0 = 0.5, λ = 100, mt = 2× 10−4, and ω = 34.56 were chosen, corresponding to
the scale choices described in the next section.

any future developments of this algorithm it may be useful to update the time-

integration to a second-order or third-order method, allowing larger time-steps to

be used. The memory requirements of this would be fairly modest, as only the

ice thickness would need to be saved between time-steps.

Similarly, the error was found to fall with an increasing number of Chebyshev

nodes used in the calculation. However, after a certain point, the error stagnated

and adding more nodes did not cause further improvement. The point at which

this stagnation occurs seems to depend on the time-step, with smaller time-steps

permitting higher numbers of nodes before stagnation. Similarly, the beginnings of

stagnation with any further reductions in the time step can be seen in figure 3.3.

This is consistent with the total error being the sum of error arising due to temporal

discretisation and spatial discretisation. Increased resolution was found to be a more

computationally expensive means to improve accuracy than reducing the time-step.



96 3.1. Algorithms and Numerical Method

10-5 10-4 10-3 10-2 10-1

∆t

10-5

10-4

10-3

10-2
h

er
r

t=5

t=10
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at times t = 5 and t = 10 for different time-steps, using 300 grid-points. Parameter values
ū = 1, ũ0 = 0.5, λ = 100, mt = 2× 10−4, and ω = 34.56 were chosen, corresponding to
the scale choices described in the next section.
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Figure 3.4: The root-mean-square (dashed) and the maximum (solid) error over the
course of two simulations with different time-steps, both using 300 grid-points. Parameter
values ū = 1, ũ0 = 0.5, λ = 100, mt = 2×10−4, and ω = 34.56 were chosen, corresponding
to the scale choices described in the next section.
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Figure 3.5: The root-mean-square (dashed) and the maximum (solid) error over the
course of two simulations with different time-steps, both using 300 grid-points. In
this case a constant melt rate was applied, with error found relative to the solution in
equations (3.30) and (3.31). Parameter values ū = 1, ũ0 = 0.5, λ = 100, m = 10−3, and
ω = 34.56 were chosen, corresponding to the scale choices described in the next section.

Plotting the root-mean-square and maximum error over the course of a simulation

shows that both grow approximately linearly (figure 3.4), although the latter is

very noisy. Presumably this noise is due to aliasing of small-scale features of the

oscillations onto a discrete grid. The rate of growth increases with the size of the

time-step. There is a spike in error which occurs as the kink at the transient feature

reaches the end of the domain around t = 6. The reason for the continued error

growth after the transient has been advected away is the growth in melt rate. This

means that ripples will tend to be larger and thus display larger absolute error.

Running a simulation with a constant melt rate of m = 10−3 and comparing to the

solution in equations (3.30) and (3.31) indicates that the error becomes roughly

constant after the transient feature leaves the domain (figure 3.5).

Experiments with this benchmarking problem showed that using 320 grid-points

with a time step of 10−5 resulted in absolute error no larger than 10−4. Error in

the amplitude of the ripples at the end of the domain was no more than ∼ 10%,
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which was felt to be acceptable when running simulations.

3.1.4.2 Plume

Testing the plume solver was more difficult, as the structure of the solver required

a non-zero diffusivity, while the analytic solution in equation (2.19) assumed ν = 0.

To avoid this problem, the equation of state was altered for the benchmark test so

that it would always return the same density profile, regardless of plume salinity or

temperature. The density was chosen so that the plume would have the same velocity

as in the analytic solution. Now uncoupled from the continuity and momentum

equations (3.6a) and (3.6b), the salinity and temperature equations (3.6d) and (3.6e)

could be analytically solved individually. A plume was initialised by giving this

analytic solution a sinusoidal perturbation of amplitude 0.1 and a wavelength

twice the size of the domain. Starting from this initial guess and a prescribed

wedge-shaped ice thickness, the solver was able to converge to the expected result.

The coupled behaviour of the ice shelf/ocean received less rigorous testing as

there are no analytical benchmark solutions available for the full nonlinear problem.

The two components were initialised much as they were in the plume test (except

that the plume density was now made dependent on salinity) and then allowed

to evolve together. As the resulting steady-state was not known, it was simply

ensured that numerical convergence was achieved as the number of Chebyshev nodes

increased and the time step reduced, and that the results looked plausible.

3.2 Simulations

A large suite of simulations was run to examine the effects of seasonal variability

on ice shelf structure. In order to facilitate comparisons to the linear analysis

described in Chapter 2, some of these used the same parameterisation choices, while

others examined the effect of using different parameterisations of ice viscosity and

plume entrainment. A few simulations were run without basal drag, although most

included it. A complete list of these simulations, giving identifiers and information

on their characteristics, can be found in table 3.2. Ice viscosity was treated as either



3. Response of an Ice Shelf to Nonlinear Forcing 99

Table 3.2: A list of the simulations performed. The first column indicates the identifier
for that particular simulation. In the next column the “driver” which undergoes sinusoidal
seasonal variation is specified. The choices are between no seasonal variation (“Steady”),
varying subglacial discharge (“Discharge”), or varying the speed of ice across the grounding
line (“Ice flux”). The third column indicates the viscosity law used for the ice. This
could be either a uniform viscosity (“Newtonian”) or the power law rheology described
by Glen’s Law in equation (3.3) (Glen, 1958). The entrainment parameterisation is
specified in the fourth column and could be that of either Jenkins (1991)—“J91”, given
in equation (3.8)—or that of (Kochergin, 1987)—“K87”, given in equation (3.9). The
final column indicates any other noteworthy characteristics of the simulations, such as the
plume’s turbulent drag parameter being set to zero or the driver forcing being applied as
a square wave rather than the usual sinusoid.

Name Driver η e Notes
ssNeJeDa Steady Newtonian J91
ssNeJeDand Steady Newtonian J91 No drag
ssNeKoDa Steady Newtonian K87
ssGLJeDa Steady Glen’s Law J91
ssNeJeDad0 Steady Newtonian J91 δ = 0
ssNeJeDandd0 Steady Newtonian J91 No drag, δ = 0
ssNeKoDad0 Steady Newtonian K87 δ = 0
ssGLJeDad0 Steady Glen’s Law J91 δ = 0
diNeJeDa Discharge Newtonian J91
diNeJeDand Discharge Newtonian J91 No drag
diNeKoDa Discharge Newtonian K87
diGLJeDa Discharge Glen’s Law J91
ifNeJeDa Ice flux Newtonian J91 δ = 0
ifNeJeDadn0 Ice flux Newtonian J91 δ 6= 0
ifNeJeDand Ice flux Newtonian J91 No drag
ifNeJeDacm Ice flux Newtonian J91 Constant melt, δ = 0
ifNeKoDa Ice flux Newtonian K87 δ = 0
ifGLJeDa Ice flux Glen’s Law J91 δ = 0
ifNeJeDasw Ice flux Newtonian J91 x Square wave forcing, δ = 0

Newtonian or following Glen’s Law, as specified in equation (3.3). Entrainment

was parameterised using either equation (3.8) (Jenkins, 1991) or equation (3.9)

(Kochergin, 1987), while melting was parameterised according to equation (3.11).

The three-equation formulation given in equation (1.17) was not used, as other

sensitivity tests were considered more interesting. Simulations were run with 320

grid points and a time step of 10−5. Unless otherwise noted, all simulations used

the parameter values listed in table 3.1.

Initially a set of simulations were run to steady state (§ 3.3). These results were

then used to initialise a series of simulations undergoing seasonal forcing (§ 3.4–3.5).
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Figure 3.6: A comparison of thickness perturbations h − h̄ (where h̄ is the thickness
in steady state) at various times in successive oscillatory cycles of simulation ifNeJeDa
after it was run to t = 10. As can be seen, they are identical within numerical accuracy.

The simulations were run from t = 0 to t = 10 to allow initial transients to be

advected out of the domain. At this point the shelf was in a statistically-steady

state, with each cycle identical to the last (within numerical error), as illustrated

in figure 3.6. The simulations were then run for one additional oscillatory period

with more frequent output, for use in producing plots and animations.

3.3 Evolution to Steady State

It is useful to know the steady state of the ice shelf for a given choice of parameters

and boundary conditions, so that there is a mean state against which to compare

seasonal variations. Running a simulation to steady state also acts as a further test

of the nonlinear solver, using the new set of scalings and parameter values.
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At the grounding line, inflow boundary conditions were set to

h = 1, u = 1, D = ε, U = Qg/ε, S = 0, T = 0, at x = 0. (3.34)

The mass flux, DU , of the plume at the grounding is equivalent to the subglacial

discharge Qg. The plume thickness is set to some small value, ε, to avoid a singularity

and the velocity is then chosen to be consistent with the subglacial discharge. The

exact value of ε is arbitrary, so long as the plume remains supercritical; after a narrow

boundary layer the plume will take on the same thickness and velocity regardless of

the choice of ε (c.f. Dallaston et al., 2015). Typically, a value of ε = 3×10−4 was used.

The aforementioned boundary layer which emerges in the plume near the

grounding line proved difficult for the QLM to handle and would often result

in the simulation failing. While larger diffusivities tended to improve numerical

stability, ν = 3.69 × 10−2 is the largest plausible value and it proved insufficient.

In order to address this issue, an initial value problem (IVP) was constructed

from the plume equations with diffusion set to zero and values at the grounding

line set to those in equation (3.34). This was then integrated a small distance

(∆x = 0.05) past the grounding line, using the current basal draft of the ice, until

largely outside of the boundary layer. The resulting values for the plume variables

were provided to the plume solver as boundary conditions. The integration was

performed using the highest-order Runge-Kutta algorithm (Prince and Dormand,

1981) in the rksuite_90 package (Brankin and Gladwell, 1994).

The vertically integrated normal stress of the ice is set equal to the vertically

integrated hydrostatic pressure of the ocean at the end of the ice shelf. In

dimensionless units, this corresponds to

4ηhux = χh2 at x = X. (3.35)

Note that for this 1-D shelf model without buttressing stresses, the condition in

equation (3.35) in fact holds across the entire length of the shelf. This indicates

that the end of the domain does not necessarily correspond to the calving front;

it may equally be treated as just the end of the region of the ice shelf which is
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Figure 3.7: (a) The steady state plume thickness D, plume velocity U , basal ice draft b,
and ice velocity u resulting from simulation ssNeJeDand. Also plotted is the analytic basal
draft of the ice shelf (b̂) expected for this level of subglacial discharge using equation (2.21),
which sets δ = µ = ν = 0 and neglects meltwater release into the plume. The lower pane
displays plume temperature T and salinity S. (b) The components of the momentum
equation for the plume in steady state. The dominant balance is between buoyancy and
inertia.

of interest. In the plume, the gradient of velocity, salinity and temperature are

all taken to be zero at the outflow boundary:

Ux = 0, Tx = 0, Sx = 0, at x = X. (3.36)

Simulation ssNeJeDand was run with µ = 0 (no turbulent drag on the plume), as

was the case in the linear analysis. The ice was initialised with the profile given by

equation (2.21). The resulting steady state basal draft and plume properties can be

found in figure 3.7a with a diagnosis of key terms in the plume momentum balance

in figure 3.7. In equation (2.18), the plume velocity was constant across the domain.

This was the result of a balance between inertia and buoyancy, (DU2)x ∼ D(ρa−ρ)bx,

a balance which also holds in this simulation to a good approximation (figure 3.7b).

However, the uniformity also required the assumption that melting contributed

much less mass to the plume than did entrainment and could therefore be ignored.

Although the volume of meltwater is small, in this simulation it proved to be a
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Figure 3.8: (a) The steady state plume thickness D, plume velocity U , basal ice draft b,
and ice velocity u resulting from simulation ssNeJeDa. Also plotted is the basal draft of
the ice shelf expected for this level of subglacial discharge using the analytic solution of
equation (2.21) which sets δ = µ = ν = 0 and neglects meltwater release into the plume.
The simulation ssNeJea included turbulent ice-ocean drag on the plume. The lower pane
displays plume temperature T and salinity S. (b) The components of the momentum
equation for the plume in steady state. Downstream, the dominant balance is between
buoyancy and drag, while closer to the grounding line inertia is also significant.

significant source of buoyancy (as seen by the gradual downstream decline in salinity

in figure 3.7), causing the plume to accelerate throughout the domain (see u(x) in

figure 3.7a) and leading to greater levels of melting. As such, the ice shelf is slightly

thinner towards the calving front than predicted by equation (2.21).

Simulation ssNeJeDa (including basal drag in the plume, with µ = 0.799) was

initialised with the output from simulation ssNeJeDand. The resulting basal draft

and plume properties are shown in figure 3.8a. In this case, the buoyant force on the

plume is balanced by drag across most of the domain, D(ρa−ρ)bx ∼ µ|~U |U , although

inertia also plays a role in the balance closer to the grounding line (figure 3.8b). This

results in a slower-moving plume, with less transfer of heat to the base of the ice

shelf (as characterised by the velocity-dependent heat transfer parameterisation) and

hence less melting. As such, the ice shelf is slightly thicker in this simulation with ice-

ocean drag compared to that without drag and to the prediction of equation (2.21),
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Figure 3.9: The components of the ice shelf continuity equation in steady state for
simulation ssNeJeDa. Stretching (uxh) is the dominant source of thinning near the
grounding line, while stretching and melting (λm) are of comparable magnitude towards
the calving front. As this is steady state, the Eulerian derivative ht = 0 and the Lagrangian
rate of change is purely advective (uhx).

as seen by comparing red and dashed cyan lines in figure 3.8a. Counter-intuitively,

the reduced melt rate in figure 3.8 compared to figure 3.7means that less heat is

transferred from the plume to the ice and thus leads to a slightly higher plume

temperature. As drag slows the plume it leads to convergence in the velocity field

and, due to the plume being incompressible, causes the plume to grow thicker with

drag relative to the µ = 0 simulation, as can be seen by comparing figures 3.7

and 3.8. As can be seen in figure 3.9, thinning of the ice-shelf is dominated by

stretching near the grounding line, where the majority of thinning occurs. Only

towards the calving front (end of the domain), where the thinning rate is much

lower, do melting and stretching approach comparable magnitudes.
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Figure 3.10: (a) The steady state plume thickness D, plume velocity U , basal ice draft
b, and ice velocity u resulting from simulation ssGLJeDa featuring Glen’s Law rheology.
Also plotted is the basal draft of the ice shelf expected for this level of subglacial discharge
using the analytic solution of equation (2.21) which sets δ = µ = ν = 0 and neglects
meltwater release into the plume. The lower pane displays plume temperature T and
salinity S. (b) The components of the momentum equation for the plume in steady state.
Downstream, the dominant balance is between buoyancy and drag, while closer to the
grounding line inertia is also significant.

3.3.1 Glen’s Law Ice Rheology

Simulations were also run with the more realistic ice rheology of Glen’s Law to test

the importance of the choice of ice rheology. While Newtonian viscosity results

in the ice stretching at the same rate everywhere, Glen’s Law means that ice

undergoing greater strain will be able to stretch more easily. The steady state

of simulation ssGLJeDa using Glen’s Law can be found in figure 3.10 and should

be compared to the run with Newtonian rheology in figure 3.8. The simulation

with Glen’s Law shows significantly thicker ice towards the calving front than seen

in the previous simulations and predicted in the analytic solution. Even with a

Newtonian rheology, the velocity gradient towards the calving front is lower than

the gradient close to the grounding line (figure 3.11). Glen’s Law causes a feedback,

resulting ice having a higher viscosity downstream, and further reducing stretching

(i.e., an even smaller velocity gradient is present, as can be seen in figure 3.11).
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Figure 3.11: A comparison of steady state ice flow velocity in a simulation using Glen’s
Law (ssGLJeDa) and one with a Newtonian rheology (ssNeJeDa).

This produces thicker and slower flowing ice than in simulation ssNeJeDa. As no

parameterisations have been changed in the plume dynamics, the force balance of

the plume (figure 3.10b) is fairly similar to simulation ssNeJeDa.

3.3.2 Alternative Entrainment Parameterisation

To test the sensitivity to the entrainment parameterisation, simulation ssJeKoDa

was run with entrainment parameterised using equation (3.9) (Kochergin, 1987)

rather than equation (3.8) (Jenkins, 1991). The entrainment coefficient cL was

selected to minimise the difference in the domain-averaged melt rate found when

the plume was solved using the parameterisation in equation (3.8) compared to

when using that in equation (3.10). Solutions were found for a fixed ice profile

described by equation (2.21) with γ = 2 and X = 10. The minimisation was

performed using the lmdif1 routine in MINPACK (Moré et al., 1984). It was

found that the result of this routine depended on the initial guess of cL, so it was

run iteratively using the previous output as a new input until convergence was

achieved. This gave a result of cL = 0.1059, which is approximately four times

greater than those used in previous work by Payne et al. (2007) and Holland,

Feltham, and Jenkins (2007). However, Payne et al. (2007) gives no justification for

their choice of value. Holland, Feltham, and Jenkins (2007) chose the parameter

value by tuning it to match observations of marine ice deposition. Given the rather
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Figure 3.12: (a) The steady state plume thickness D, plume velocity U , basal ice draft
b, and ice velocity u resulting from simulation ssNeKoDa. Also plotted is the basal draft
of the ice shelf expected for this level of subglacial discharge using the analytic solution of
equation (2.21) which sets δ = µ = ν = 0 and neglects meltwater release into the plume.
The lower pane displays plume temperature T and salinity S. (b) The components of the
momentum equation for the plume in steady state. Downstream, the dominant balance is
between buoyancy and drag, while closer to the grounding line inertia is also significant.

arbitrary nature by which the value of cL has been chosen in the past, the larger

value used here is considered to be justifiable. Note that, in a sensitivity analysis,

Holland, Feltham, and Jenkins (2007) showed that the melt rate stagnated for

cL & 0.04. This is consistent with the experience when calculating cL here, where

it was found that the differences in the melt rate were only weakly sensitive to

the exact value. The Kochergin (1987) parameterisation tended to produce higher

melt rates near the grounding line and lower ones towards the calving front when

compared to the Jenkins (1991) parameterisation.

The steady-state results of this simulation are shown in figure 3.12. The ice is

somewhat thicker than in the analytic solution and similar in thickness to the ice in

simulation ssNeJeDa (see figure 3.8). This is to be expected, as the parameter cL
was tuned to minimise differences in melt rate. There is slightly more entrainment in

simulation ssNeKoDa than ssNeJeDa. The greater entrainment (as seen by increased

plume thickness) leads to a slightly higher temperature and salinity, as seen in
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the lower panel of figure 3.12a. The thicker plume also means that the buoyancy

force component arising from changing plume thickness is more noticeable than

in previous simulations (see red line in figure 3.12b).

3.3.3 Simulations Without Hydrostatic Pressure Gradient

In § 3.5, when examining the effect of seasonally varying the ice flux crossing

the grounding line, it was necessary to run a number of simulations with δ = 0.

In effect, this is setting hydrostatic pressure gradients to zero and turning off

gravity waves in the plume, as is commonly done in 1-D plume models under ice

shelves (e.g. Jenkins, 1991; Payne et al., 2007; Magorrian and Wells, 2016). Doing

so required steady-state results for this parameter choice with which to initialise

simulations and compare perturbed results. As such, a second version of each

of the above simulations was run with δ = 0, the results of which are plotted in

figure 3.13. These simulations have the same name as their δ 6= 0 counterparts,

but with the suffix d0. The steady state ice thickness is little changed compared

to the simulations where δ 6= 0, but the plume flows slightly faster and (except

in ifNeKoDa) is slightly thinner towards the calving front.

3.3.4 Hydraulic Shocks

This section documents a particular case where the transient development from

a specific initial condition resulted in the development of a shock-like feature

and subsequent failure of the numerical solver. When simulation ssNeJeDa (with

µ = 0.799) was initialised with a wedge-shaped ice shelf of the form h(x, t = 0) =

1− 0.1rx, the simulation was unable to reach a steady state. New ice which entered

the domain took on a profile near to the grounding line similar to what would be

expected at steady state, with a significant slope. Meanwhile, old ice from the

initial condition was transformed by a combination of advection, stretching, and

melting. Together, these processes flattened the profile of the old ice so that it had

a very small, nearly uniform slope. Over time, an overdeepening developed at the

transition between these two regions, where the basal slope of the ice was slightly
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Figure 3.13: Steady state results from simulations where δ = 0 (solid lines), along side
the corresponding ones with δ 6= 0 (dashed lines).

negative. At the location where these regions of the shelves met, the plume formed

a shock, experiencing a rapid decrease in velocity and increase in thickness, as seen

near x = 1 in figure 3.14a. Eddy viscosity and gradients in hydrostatic pressure

smear out this feature, giving a continuous transition rather than a discontinuous

shock of the type that would be present in an inviscid adiabatic plume. Upstream

of the shock, buoyant forces are balanced by a combination of inertia and drag,

whereas buoyancy is balanced only by drag downstream of the shock (figure 3.14b).
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Support for this feature being a genuine hydraulic shock is given by examining

the Froude number, Fr = |U |/
√
δD(ρa − ρ), the ratio between the plume speed

and the propagation speed of gravity waves. The Froude number is plotted in

figure 3.14c, which shows that at the grounding line Fr > 1, indicating that the

plume is supercritical. However, within the region of the shock, the Froude number

falls below 1 and stays there across the rest of the domain, meaning that the

plume is now subcritical. The shock forms at the transition between the super- and

subcritical regimes, similar to those in adiabatic gases (e.g. James and Keith, 2006,

chapter 4). Over time, this shock tends to steepen and approach a discontinuous

state. Discontinuities lead to ringing and error in spectral differentiation, causing

slow convergence in the plume solver.

Nonetheless, the simulation was able to progress until the negative-slope feature

neared the end of the domain. At this point the shock appeared to grow in

an unstable fashion (see figure 3.15) and the GMRES component of the plume

solver began to stagnate. Increasing the diffusivity (ν) did not solve this problem.

It may be that an alternative implementation of the GMRES algorithm, which

has been modified to be resistant to stagnation (e.g., de Sturler, 1999), would

perform better. Alternatively, there may be a physical instability at play which

is causing the model to break down when features of negative ice shelf slope

interact with the outflow boundary.

As the shock formed at a location where the slope of the ice shelf approached

zero, it seems possible that such a feature could arise at the apex of any transverse

channels, or precursors thereof, inscribed on the underside of the ice shelf. While

it was not possible to investigate in more detail here, due to failure of the plume

solver, it may be interesting for future work to consider what effect this shock could

have on melt-patterns and further evolution of ice topography. It is worth noting

that, in simulations run with βT = 0 (i.e., with the plume density insensitive to

temperature), while a shock was produced there was no negative slope. This is

unexpected, given that βT∆T � βS∆S and thermal buoyancy contributions were

weak, suggesting the system may be close to some critical threshold. If any small
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Figure 3.14: The diffusively smeared shock which forms in a plume with ν = 0.799 at
time t = 0.8 for a simulation like ssNeJeDa but initialised with h(x, t = 0) = 1− 0.1rx.
(a) The plume thickness D, plume velocity U , basal ice draft b, and ice velocity u. The
lower pane displays plume temperature T and salinity S. (b) The components of the
momentum equation for the plume. Upstream of the shock at x = 1 there is a balance
of buoyancy, inertia, and drag, while downstream only buoyancy and drag play a role.
The eddy diffusion, ν(DUx)x, and hydrostatic pressure gradient, −δD(ρa− ρ)Dx, become
significant near the shock and likely lead to the continuous transition. Sharp gradients
in buoyancy and diffusion terms resulted in some ringing when spectral differentiation
was applied. Internally, the plume solver stored each variable’s gradient separately from
its value and required that they agree with each other for convergence to be achieved.
Although the plume solver did converge, only the values (not the derivatives) were saved
as output and differentiating them exhibited some ringing. (c) The Froude number (Fr)
of the plume, alongside the thickness and velocity. The Froude number is less than 1,
indicating a subcritical plume, downstream of the shock.
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Figure 3.15: Upper: The thickness (solid lines) and velocity (dashed lines) of a plume at
successive output times in a simulation, exhibiting larger and larger shock-type features
as an overdeepening in the ice shelf approaches the outflow boundary. Lower: the basal
slope of the ice shelf, showing an overdeepening (aligned with the dip in plume thickness
in the upper panel) approaching the outflow boundary. Note that the sharp change in
the shelf gradient results in some ringing when spectral differentiation is applied.

change could shift the system from one side to the other then the result may be

very sensitive to parameterisation choices of entrainment and melting. Furthermore,

these results indicate that evolution to steady state may be sensitive to initial

conditions; some choices of initial conditions will result in dramatically different

transient behaviour. While it has not be possible to conclusively test this, it is

assumed that once the initial ice profile has advected past the calving front the

ice shelf would start evolving towards the usual steady state.

3.4 Seasonal Subglacial Discharge Forcing

A further two simulations were run with periodic variations in subglacial discharge

to compare with the results of the linear analysis in § 2.3: one with turbulent
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Figure 3.16: The difference between the ice thickness (h) at different points in the
oscillatory cycle for simulation diNeJeDand with no ice-ocean drag, compared to the
thickness in steady state (h̄) simulation ssNeJeDand. The results are from after the ice
shelf has reached a statistically-steady state. In the legend of this plot, τ refers to the
oscillatory period.

drag on the plume and the other with the drag coefficient set to zero. In both

cases, subglacial discharged oscillated according to

Qg = Qg0 [1 + A sin(ωt)] , (3.37)

where Qg0 is the value used in the steady state simulations (table 3.1), A = 0.9

is the amplitude of the forcing, and ω is the angular frequency of oscillations, set

corresponding to a period of τ = 1 yr. The choice of A = 0.9 was to see the response

to large amplitude forcing, but sensitivity is tested later. This forcing was applied

by changing the boundary value of the plume velocity. It was decided to avoid

reducing the discharge to zero as this resulted in problems for the plume solver

if the plume had Fr < 1 at the grounding line.

Animations showed variations in ice thickness which were periodic in time. Plots

of perturbations to ice thickness relative to steady state at different points in the

cycle were produced for the simulation without ice-ocean drag (figure 3.16) and the
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Figure 3.17: The difference between the ice thickness (h) at different points in the
oscillatory cycle for simulation diNeJeDa with ice-ocean drag, compared to the thickness
in steady state (h̄) simulation ssNeJeDa. The results are from after the ice shelf has
reached a statistically-steady state. In the legend of this plot, τ refers to the oscillatory
period.

one with drag (figure 3.17). As was found in the linear analysis, in both simulations

seasonal variations in subglacial discharge caused two responses: global oscillations

of the shelf thickness across the entire domain, along with ripples inscribed in the ice

which are advected towards the calving front. Once again, the amplitude of these

variations is of order 10−3 compared to the inflowing ice thickness and decreases

to 10−4 towards the calving front. The ripples are approximately 20% larger in

the simulation without drag than the one with, due to greater plume velocity (and

thus larger melt rate) for a given inflow of subglacial discharge.

The perturbations to the terms in the ice mass balance equation (3.1a) relative

to steady state were plotted in figure 3.18 for simulation diNeJeDa. Looking at

the largest terms, it is clear the leading-order balance(
∂

∂t
+ ū

∂

∂x

)
h̃ = Dh̃

Dt
≈ −λm̃ (3.38)

holds. In this equation, variables with a bar are the steady state values, while

those with a tilde are the difference between the perturbed value and the steady
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Figure 3.18: The magnitudes of perturbations to the terms in equation (3.1a) at time
t = 0.25τ into a season cycle of simulation diNeJeDa, where here τ represents the period
of the forcing. The forcing takes the form of variations in subglacial discharge. In the
legend, a bar over a variables indicates it is the value at steady state (from simulation
ssNeJeDa), while a tilde indicates it is the difference between the variable at this time
and the steady state value.

state value. This relationship is the same as that found for in the linear analysis in

equation (2.29), and shows that changes to the ice thickness are caused by changes

to the melt rate accumulated following a Lagrangian parcel of ice.

There are differences between the results in this section and those of the linear

analysis. Both the ripples and the global oscillations are non-symmetric, with

a bias towards the ice becoming thicker downstream on the shelf. This is due

to the response of the plume velocity to varying subglacial discharge, because

the melt rate is proportional to the plume velocity. In the case without drag, a

scale analysis of equation (3.6b) reveals

U ∼
(
gβSSa
E0

Qg

)1/3

, (3.39)

from the balance between inertial and buoyancy terms, similar to the scaling found by

Jenkins (2011) for a planar ice slope. The nonlinear relationship between U and Qg

means that periods of low discharge decrease the plume velocity more than periods
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of high discharge increase it. Since melt is proportional to plume velocity, the result

is that varying discharge reduces the melt rate on average, leading to a thicker shelf.

In the case with drag, there is an additional mechanism: in absolute terms, drag

reduces the plume velocity more when Ug is larger than when it is small. In the linear

analysis of § 2.3, the cube-root of equation (3.39) was linearised using the binomial

approximation and it was assumed µ = 0, so the asymmetry could not occur.

Despite the large oscillations in the melt rate resulting from equation (3.39),

the ripples in simulations diNeJeDand and DiNeJeDa are small. Examining the

corresponding steady state ice mass balance in figure 3.9, it is apparent that near

the grounding line, for an ice shelf of this geometry, stretching is a much more

significant source of thinning than is melt. As this is the region in which the ripples

are inscribed into the shelf (after which they are passively advected and stretched),

even large changes in the melt rate will result in only small changes to ice shelf

thickness. Although figure 3.9 was for the unforced shelf, the perturbations to the

shelf in simulations diNeJeDand and diNeJeDa were small and relative magnitudes

of melting and stretching are similar.

In these simulations, the structure of the ice shelf was perturbed by altering

the melt rate by a factor of ∼ 2.5 (relative to its lowest value) via variations in

plume flow. Although there may be some small quantitative differences, seasonal

variations in the temperature forcing (Ta) of the system would likely have a similar

magnitude effect on the melt rate. It can thus be concluded that temperature

variations would produce similar ripples to the ones displayed here.

3.4.1 Glen’s Law Ice Rheology

Simulation diGLJeDa was run to determine whether a different rheology would alter

the behaviour of the ripples in the ice. The results of this simulation at different

points in the seasonal cycle are shown in figure 3.19. There are no qualitative

differences between these results and those of simulation diNeJeDa: ripples and

global oscillations are both present, perturbations are of a similar magnitude,

and the same bias towards thickening persists. The bias towards thickening is
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Figure 3.19: The difference between the ice thickness (h) at different points in the
oscillatory cycle for simulation diGLJeDa with Glen’s Law rheology and ice-ocean drag,
compared to the thickness in steady state (h̄) simulation ssGLJeDa. The results are from
after the ice shelf has reached a statistically-steady state. In the legend of this plot, τ
refers to the oscillatory period.

stronger in this case, however. This is thought to be due to the ice moving more

slowly (see figure 3.11) and thus having more time for the perturbation to build

up before reaching the calving front. The ripples have a shorter wavelength than

in simulations using Newtonian rheology, as they are advected a shorter distance

while forming and undergo less stretching.

3.4.2 Alternative Entrainment Parameterisation

Finally, simulation diNeKoDa was run using the entrainment parameterisation of

Kochergin (1987). This was to determine whether the above results were dependent

on the proportionality of the Jenkins (1991) parameterisation to the ice shelf slope,

which tends to inhibit ripples feeding back into faster plume flow. However, the

results in figure 3.20 show that the shape and size of the ripples remains largely

unchanged, with a small reduction in the ice thickness at the end of the shelf.
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Figure 3.20: The difference between the ice thickness (h) at different points in
the oscillatory cycle for simulation diNeKoDa with the Kochergin (1987) entrainment
parameterisation and ice-ocean drag compared to the thickness in steady state (h̄)
simulation ssNeKoDa. The results are from after the ice shelf has reached a statistically-
steady state. In the legend of this plot, τ refers to the oscillatory period.

3.4.3 Sensitivity to Forcing Frequency and Amplitude

Simulation diNeJeDa was rerun a number of times with different amplitude and

frequency for the subglacial discharge forcing. It was not physically meaningful

to significantly increase the amplitude of the discharge forcing, so instead four

simulations were run with smaller values. The amplitude of the ice shelf ripples

(either the first or the last) was found to scale slightly super-linearly with the

magnitude of the forcing (see figure 3.21). This is due to the nonlinear relationship

between plume velocity and subglacial discharge which means that the amplitude of

plume velocity (and hence melt) variations grows superlinearly with the amplitude

of subglacial discharge variations. This can be seen by taking the difference

between the plume velocity calculated from equation (3.39) for Qg = Qg0 + A

and the velocity for Qg0 − A.

Testing for different values of ω was slightly complicated by the requirement

to compare the results at the same point in the cycle for each. The simulations
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Figure 3.21: Response of ice shelf thickness perturbations to the amplitude of subglacial
discharge forcing A. Results are from a quarter of the way through a seasonal cycle, after
the ice shelf has reached quasi-steady state. Other than forcing amplitude, all simulation
parameters are the same as in diNeJeDa. Left: Ice thickness perturbations for each
simulation. Right: Amplitude of the first and last ripples on the ice shelf as a function of
the forcing amplitude.

were all run to t = 10 as before and then, if necessary, continued running until

the current cycle was completed. Each simulation was then run for an additional

cycle (the exact length of which varied inversely with ω), with the state of the ice

shelf and plume saved at intervals of 0.01τ . The results, plotted in figure 3.22,

showed that the amplitude of the ripples increases with the inverse of the forcing

frequency, as was expected from equation (2.37). However, the relationship between

amplitude and ω−1 is slightly nonlinear, the reason for which is not clear. In the

case of the last ripple it may just be an issue of choosing where to measure the

amplitude from, as the ripple peaks and troughs are located at different positions

along the shelf as the frequency changes. The wave-number of the ripples is linearly

related to the forcing frequency, similar to the ω = 〈u〉k scaling found in § 2.3.2.

However, extrapolating backwards to ω = 0 gave k = −3.65 for the first ripple and

k = 1.07 for the last, rather than k = 0 as would be expected. In neither case can

this be explained by the error of the fit (σ = 0.09 and σ = 0.10, respectively). This

likely indicates nonlinear behaviour at very low frequencies.



120 3.5. Seasonal Ice Flux Forcing

0 1 2 3 4 5 6
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

h
−
h̄

[1
0
−

3
]

1/2 ω0

2/3 ω0

1 ω0

4/3 ω0

2 ω0

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
1/ω [ω−1

0 ]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

R
ip

pl
e 

Am
pl

itu
de

  [
10
−

3
]

First
Last

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
ω [ω0 ]

0

10

20

30

40

50

60

70

k
First
Last

Figure 3.22: Response of ice shelf thickness perturbations to the frequency of subglacial
discharge forcing, ω. Results are from a quarter of the way through an oscillatory period,
after the ice shelf has reached a statistically-steady state. Other than forcing frequency, all
simulation parameters are the same as in diNeJeDa. Upper: Ice thickness perturbations
for each simulation. Lower left: Amplitude of the first and last ripples on the ice shelf as
a function of the inverse forcing frequency. Lower right: Wave number k of the first and
last ripple on the ice shelf as a function of the forcing frequency.

3.5 Seasonal Ice Flux Forcing

A number of simulations with varying ice flux were also run for comparison with

the results in § 2.4. This was achieved by setting the boundary condition for

the ice velocity at the grounding line to

ug = ug0 [1 + A sin(ωt)] , at x = 0, (3.40)

where ug0 is the value used in the steady state simulations (see table 3.1), A = 0.5

is the amplitude of the oscillations, and ω is the angular frequency of oscillations,

set corresponding to a period τ = 1 yr. Such variability could arise in nature



3. Response of an Ice Shelf to Nonlinear Forcing 121

0 1 2 3 4 5 6
x

30

20

10

0

10

20

30

h
−
h̄

[1
0
−

3
]

t=0.25τ

t=0.5τ

t=0.75τ

t=1.0τ

Figure 3.23: The difference between the ice thickness (h) at different points in the
oscillatory cycle for simulation ifNeJeDand with seasonally varying ice flux and without
ice-ocean drag, compared to the thickness in steady state (h̄) simulation ssNeJeDand.
The results are from after the ice shelf has reached a statistically-steady state. In the
legend of this plot, τ refers to the oscillatory period.

due to seasonal melting events lubricating the glacier bed and allowing it to slip.

The ice thickness was kept constant at the grounding line, as there is no intuitive

reason to expect it to undergo periodic oscillations. The grounding line position

was assumed to be fixed. This was purely a matter of convenience to simplify the

calculation and in reality there likely would be some movement. Future work could

incorporate grounding line motion by coupling together grounded and floating ice

sheet models, as described by Schoof (2007).

The results for simulation ifNeJeDand (without ice-ocean drag) are shown in

figures 3.23, which displays the difference between the perturbed ice thickness

during seasonal forcing and steady state thickness (from simulation ssNeJeDand)

at different times in the seasonal cycle. It shows a great deal of similarity with the

linear results in figure 2.11. As before, there are ripples inscribed in the ice which

are advected and stretched, as well as global oscillations in the thickness. Unlike

the simulations in § 3.4, the nonlinearity is insufficient to break the symmetry of
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Figure 3.24: Illustration of plume thickness D and ice shelf basal slope bx when an
instability occurred as bx → 0 near the outflow boundary in the simulation ifNeJeDadn0,
for δ 6= 0. This resulted in the plume thickness (D) growing over time until the solver
failed at t = 2.8028.

the forcing and cause the ice to preferentially thin or thicken.

Attempting to run this simulation with basal drag included (ifNeJeDadn0)

produced small regions with negative basal shelf slope. When the first of these

features approached the outflow boundary, the plume responded by undergoing

shock-like behaviour, with increasing thickness and decreasing velocity. This feature

grew over time (see figure 3.24) until the plume solver failed due to stagnation in

the GMRES routine. There appears to be a physical instability of some sort which

arises when the basal slope approaches zero at the outflow boundary. Whether this

would actually cause the model to break down if integration were able to continue

is unclear; it may be that this is simply an issue of insufficiently robust numerics.

Alternatively, there may be a feedback at play between the negative basal slope

and the outflow boundary conditions for the plume.

It was found that setting δ = 0 (i.e., removing feedback due to pressure gradients
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Figure 3.25: The difference between the ice thickness (h) at different points in the
oscillatory cycle for simulation ifNeJeDa, with varying ice flux and including ice-ocean
drag, compared to the thickness in steady state (h̄) simulation ssNeJeDad0. The results
are from after the ice shelf has reached a statistically-steady state. In the legend of this
plot, τ refers to the oscillatory period.

within the plume and turning off any gravity waves) allowed the simulation to run

successfully. As similar errors occurred for all of the ice flux-forced simulations except

ifNeJeDand, all were run with δ = 0. As discussed in § 3.3.3, this approximation is

commonly used in plume models and leads to only small changes to the background

steady state, but the potential for time-dependent effects has not been fully assessed.

The runs with δ = 0 were initiated with the steady state results produced for δ = 0

described in § 3.3.3. A simulation was also run with no drag and δ = 0, but the

results were virtually indistinguishable from those of ifNeJeDand even when plotted

on the same axes, suggesting the impact of setting δ = 0 may be modest.

Simulation ifNeJeDa (figure 3.25) produced broadly similar results to those of

simulation ifNeJeDand (figure 3.23). The most noticeable difference is that the

downstream ripples are larger in figure 3.25. The perturbations also appear to be

growing slightly as they approach the calving front. This is due to a correlation in

the perturbation to the melt rate and to the ice thickness in this region, illustrated in
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Figure 3.26: Upper: perturbations to melt rate (λm̃) and basal depth (b̃) of the ice shelf
in simulation ifNeJeDa in the latter half of the domain, a quarter of the way through a
seasonal cycle after the ice shelf has reached a statistically-steady state. Lower: these two
quantities plotting against each other, showing a clear correlation, with a small phase-lag
(leading to the elliptical clustering). The colour of a point indicates its location on the
shelf, with white corresponding to x = 3 and navy to x = 6.

figure 3.26. This can be intuitively understood as being due to the plume accelerating

and flowing faster where the ice slope increases, driving greater melting. Conversely,

where the plume decelerates melting is reduced and the ice becomes thicker. The

greatest acceleration (deceleration) occurs where the slope is greatest (smallest/most

negative) rather than at the apex (keel) of ripples. This means there is a slight lag

between the thickness perturbation and the melt-feedback, which results in ripples

migrating slightly upstream relative to the Lagrangian trajectory of an ice parcel.

As figure 3.27 shows, the melt-feedback allows ripples to grow large enough to

produce a series overdeepenings in the ice shelf near the calving front. However,

comparing to the ice thickness perturbations at the time of the last output before

simulation ifNeJeDadn0 failed (t = 2.8, just before the last of the transient features

were advected out of the shelf, allowing the ice to approach a statistically-steady

state) indicates that ripple growth downstream may not occur for δ 6= 0, as can
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Figure 3.27: Upper: comparison of the basal depth of the ice shelf in simulations
ifNeJeDa and ifNeJeDacm, at t = 0.25τ after the shelf has reached a statistically-steady
state (where τ is the period of the seasonal forcing). In the former the plume is coupled
to the ice shelf, allowing melt-driven feedback to occur, while in the latter the melt-rate
is taken to be constant in time. The inset axes illustrate that a slight overdeepening
develops near the calving front only in the former simulation. Lower: The corresponding
basal slope of the ice shelf in simulations ifNeJeDa and ifNeJeDacm at t = 0.25τ . In the
latter simulation the slope is positive definite throughout the domain.

be seen in figure 3.28. This suggests that there is the potential that hydrostatic

pressure gradients may disrupt the melt-feedback mechanism, although it is unclear

exactly how. Unfortunately, the instability of the numerical solver prevents the

impact of non-zero δ on ripples from being conclusively resolved here.

The importance of melt-feedback to the formation of these overdeepenings was

tested by running simulation ifNeJeDa again with melting fixed at the steady

state value of ssNeJeDad0. This was referred to as simulation ifNeJeDacm. It

was found that without the melt feedback no overdeepenings could form (see
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Figure 3.28: Comparison of perturbed ice thickness at t = 2.8 for simulations
ifNeJeDadn0 and ifNeJeDa, in which δ = 0.036 and δ = 0, respectively. The growth of
ripples towards the end of the ice shelf which is seen in the latter (with δ = 0) is not
present in the former (with δ 6= 0 and gradients of hydrostatic pressure included in the
model).

figure 3.27). Thus, the ice flux mechanism is only sufficient to initiate the formation

of varying slope in the present configuration, but melt-driven feedback is needed

for development of overdeepenings.

The magnitudes of the perturbations to the terms in equation (3.1a) are plotted

in figure 3.29 for simulation ifNeJeDa. The dominant balance is revealed to be(
∂

∂t
+ (ū+ ũ) ∂

∂x

)
h̃ = Dh̃

Dt
≈ −ũ∂h̄

∂x
, (3.41)

which is the same as the result in equation (2.34) except that the nonlinear pertur-

bation term ũ∂h̃/∂x is now included in the Lagrangian derivative, characterising

advection of thickness perturbations by the ice velocity perturbations. The fact that

this term is significant indicates that the linear analysis of § 2.4 does not directly

apply to the present nonlinear regime. The forcing term on the right-hand-side of the

equation is significant near the grounding line, but decays downstream, indicating

that ripples are generated near the grounding line and then undergo nearly-passive
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Figure 3.29: The magnitudes of perturbations to the terms in equation (3.1a) at time
t = 0.25τ into a seasonal cycle of simulation ifNeJeDa after it has reached a statistically-
steady state. Here τ represents the period of the forcing with varying ice flux across the
grounding line. In the legend, a bar over a variable indicates it is the value at steady
state, while a tilde indicates it is the difference between the variable at this time and the
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advection. Rearranging equations (3.1a) and (3.1b) for 1-D steady state shows

∂h̄

∂x
= −

λm̄+ χ
4η h̄

2

ū
,

which can be substituted into equation (3.41) to give

Dh̃

Dt
≈ ũ

ū

(
λm̄+ χ

4η h̄
2
)
. (3.42)

This expresses the same physics as equation (2.36) did for the linear case: changes

to the ice thickness are the result of increased or decreased time the ice spends

exposed to thinning (due to melting and stretching) when the ice is moving slower

(ũ < 0) or faster (ũ > 0), respectively.

The ripples are larger than predicted in the linear analysis (compare figures 2.11

and 3.25). This is due to the different parameter values chosen for the nonlinear

simulation, representing a thicker ice shelf which undergoes greater stretching. Thus

the thinning rate will be greater and changes to the time exposed to thinning will
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have a greater effect on ice thickness. As noted above, there is also a feedback

between ice thickness perturbations and the melt rate which causes the ripples

to begin growing towards the end of the ice shelf.

3.5.1 Asymmetry in Perturbations

Careful examination of figure 3.23 and 3.25 reveals slight asymmetries in the

perturbations to the ice thickness (h− h̄), most noticeably near the grounding line.

First, it can be seen that the ripples have a larger amplitude when the ice is thinner

(t = τ) compared to when it is thicker (t = 0.5τ). Additionally, the distance from

the location of a trough to the next peak is larger than that from a peak to the

next trough. Alternatively, this may be thought of as perturbations to the ice slope

being more (less) extreme when the slope perturbation is positive (negative).

To try to understand these effects, a special case was considered where there is

no stretching (χ = 0) and the melt rate is constant in t and x. As changes to melting

and stretching were seen to be insignificant in figure 3.29 (i.e. −λm̃ and hũ′ were

small), it was thought that these assumptions would not alter the main mechanism.

The velocity of the ice at the grounding line (and thus across the entire shelf, since

there is no stretching) is ū + ũ0 sin(ωt). Under these conditions, after an initial

transient state has been advected out of the domain, the ice shelf has the implicit

solution given in equation (3.31). This equation was solved numerically using the

same parameter choices as in the nonlinear simulation and a nondimensional melt

rate of m = 10−3. A steady-state was calculated by setting ũ0 = 0. Without any

stretching, the ripples stay at the same amplitude and wavelength across the entire

length of the shelf, which makes plots of the whole domain difficult to read. As

such, only the solution for x ≤ 1 was plotted and can be found in figure 3.30. Note

that, in the absence of stretching, the magnitude of the ripples is similar to those

when forced by variations in subglacial discharge, as expected from equation (3.42).

It can be seen that there is no asymmetry present in the magnitude of the

ripples. However, the different steepness of upward downward sloping perturbations

remains. The reason for this is the nonlinear advection term in equation (3.41),
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which means that the perturbations move at different speeds along the ice shelf

depending on the phase of the forcing. When the speed at the grounding line is

higher than average (and the ice is thickening there), ice moves further per unit time

and more enters the shelf. This increases the amount of ice exposed to this forcing.

When the ice is moving more slowly (and the ice is thinning at the grounding

line), it moves a smaller distance and less ice enters the shelf. Thus, the thinning

affects smaller lengths of ice than thickening.

The only remaining potential causes of the asymmetric ripple magnitude are

perturbations to melting and stretching. To test the former, the results of simulation

ifNeJeDacm (figure 3.31) were examined. It was found to produce perturbations

which are qualitatively similar to those in figure 3.23 and also featured an asymmetry

in ripple magnitude. Hence, the asymmetry in ripple heights can be produced

without variations in melt rate. Placing the perturbations on the same axis

(figure 3.31), it could aslo be seen that the ripples generated by time-independent

melt have less extreme peaks and troughs, indicating feedback from spatial variation

in the melt rate. It also appears that the ripples in the two simulations become

slightly out of phase towards the end of the shelf. This is due to the melt feedback

and lag illustrated in figure 3.26.

Since the asymmetry can be generated without variations in melt rate, poten-

tial mechanisms by which stretching stretching can generate the asymmetry are

examined. When constructing equation (3.42) the perturbed stretching terms h̃ū′,

h̄ũ′ and h̃ũ′ were neglected as insignificant. Using the 1-D form of equation (3.1b)

and the boundary condition for u in equation (3.35), it can be shown that

∂u

∂x
= χ

4ηh (3.43)

throughout the length of the shelf, which applies equally to the steady state

and perturbed values of u and h. Substituting equation (3.43), h = h̄ + h̃, and

u = ū+ ũ into equation (3.1a), then eliminating ∂h̄/∂x using the steady state form

of equation (3.1a) a more exact form of equation (3.42) can be derived:

Dh̃

Dt
≈ ũ

ū

(
λm̄+ χ

4η h̄
2
)
− χh̄

2η h̃−
χ

4η h̃
2. (3.44)
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Note that the approximately-equals sign persists as this still neglects the effect of

changes to the melt rate. The penultimate term provides a damping on the growth of

the perturbations. However, the final term, −χh̃2/4, is negative regardless of the sign

of h̃. It represents a nonlinear rectification to changes in the stretching rate due to

the fact that increasing the ice thickness will increase stretching more than decreasing

ice thickness reduces it. This rectification biases the ice shelf towards thinning,

reducing the peaks in h̃ and increasing the troughs. While small in magnitude, it

would appear that this is the source of asymmetry in the magnitude of the ripples.

3.5.2 Glen’s Law Ice Rheology

While using Glen’s Law in place of Newtonian viscosity had no major impact when

forcing with varying subglacial discharge, stretching plays an important role in

creating the perturbations for the simulations forced by changing ice flux. As these

perturbations tend to be larger, they will also have a more significant impact on

the force balance in the ice. Furthermore, the asymmetric ripples which arise due

to nonlinearity in stretching may be altered by a change in rheology. For all of

these reasons, it was decided to run a simulation using Glen’s Law viscosity.

Before presenting the results of this simulation, it is useful to investigate the

ice shelf equations analytically. Equation (3.1b) can be integrated once again and

simplified for Glen’s Law in 1-D (using η = ξ|du/dx|−2/3/2 when index n = 3 and

the boundary condition in equation 3.35), giving the result

∂u

∂x
=
(
χ

2ξh
)3

. (3.45)

Decomposing u and h into background and perturbed portions and applying the

binomial approximation, it can also be seen that

∂ũ

∂x
≈ 3χ3h̄2

8ξ3 h̃, (3.46)

for h̃ � h̄. Substituting this result into equation (3.1a) and eliminating ∂h̄/∂x

using the steady state version of equation (3.1a), the Lagrangian derivative of the
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Figure 3.32: The difference between the ice thickness (h) at different points in the
oscillatory cycle for simulation ifNeGLDa, with Glen’s Law rheology and ice-ocean drag,
compared to the thickness in steady state (h̄) simulation ssNeGLDad0. The results are
from after the ice shelf has reached a statistically-steady state. In the legend of this plot,
τ refers to the oscillatory period.

thickness perturbation was found to be

Dh̃

Dt
≈ ũ

ū

(
λm̄+ χ3

8ξ3 h̄
4
)
− χ3h̄3

2ξ3 h̃−
3χ3h̄2

8ξ3 h̃2, (3.47)

for h̃� h̄ and m̃ ≈ 0, analagous to the result in equation (3.44) for the Newtonian

case. As before, the first term on the right hand side of this equation represents

changes to the amount of time the ice spends exposed to thinning (which is caused

by melting and stretching, represented by the first and second term in parentheses,

respectively). The second term on the right hand side is the damping of the ripples

caused by stretching, with damping rate χ3h̄3/2ξ3, while the third indicates the

nonlinear rectification of the damping. This rectification means damping gives more

significant thickness changes when h̃ > 0 than when h̃ < 0.

Simulation ifGLJeDa was run using Glen’s Law, with results shown in figure 3.32.

The most noticeable difference from previous simulations is more significant growth

of the ripples towards the calving front. This is likely due to the damping term in
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equation (3.47) being smaller than that in the Newtonian case, in this region:

χ3h̄3

2ξ <
χh̄

2η ,

hence ripples are damped less by stretching with Glen’s Law. This results in more net

growth of the ripples after accounting for the melt feedback. Near the grounding line,

the change in rheology had little effect on the outcome of the simulation. The ripples

are slightly smaller in amplitude than before, but otherwise unchanged. The smaller

ripple amplitude is due to the ice stretching less when subject to Glen’s law than with

Newtonian viscosity, as can be seen in figure 3.11. This can also be demonstrated

comparing the stretch-driven thinning term in equations (3.44) and (3.47), with

χ3h̄4

8ξ3 <
χh̄2

4η

everywhere except very near the grounding line.

Careful examination of the ripples near the grounding line in figure 3.32 shows the

asymmetry is slightly more extreme than previously seen in simulations ifNeJedand

and ifNeJeda (figures 3.23 and 3.25, respectively). The final term in equation (3.47)

is larger than that in equation (3.44), indicating that the nonlinearity of the

damping is greater than before. This is due to the cubic expression for stretching

in equation (3.45), which means that stretching increases more with thickening

than it reduces with thinning. Another result of this nonlinearity is that, overall,

there will tend to be an increase in the rate of ice-stretching. This means ice

will tend to flow slightly faster on average than in the steady-state simulation,

resulting in less time spent exposed to thinning and thus causing a bias towards

the ice being thicker towards the calving front.

3.5.3 Alternative Entrainment Parameterisation

Though it was seen in § 3.4.2 that results were insensitive to the choice of entrain-

ment paramerisation for varying subglacial discharge, for completeness simulation

ifNeKoDa was run with varying ice flux and the plume using the entrainment

parameterisation of Kochergin (1987). Using the present non-dimensionalisation,
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Figure 3.33: The difference between the ice thickness (h) at different points in the
oscillatory cycle for simulation ifNeKoDa with varying ice flux and the plume entrainment
parameterisation of Kochergin (1987) compared to the thickness in steady state (h̄)
simulation ssNeKoDad0. The results are from after the ice shelf has reached a statistically-
steady state. In the legend of this plot, τ refers to the oscillatory period.

this parameterisation depends on the parameter δ and, for δ = 0, it is undefined.

However, the Kochergin (1987) approach is a parameterisation of entrainment due to

stratified shear instability characterised by a Froude number, rather than the physical

effects of gravity wave propagation. Here we suppress gravity waves by setting

δ = 0 in all parts of the code except for within the entrainment parameterisation

where δ = 0.036 as before to retain its influence on shear instability. Once again,

there were minimal changes to the shape and magnitude of the ripples compared

to the simulations using the parameterisation of Jenkins (1991) (see figure 3.33,

as compared to figure 3.25).

3.5.4 Square Wave Forcing

To understand the fully nonlinear version of the results of § 2.4.3, simulation

ifNeJeDasw was run where the sine term in equation (3.40) was replaced with

a square wave. No Fourier transform of the forcing was performed here, so
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Figure 3.34: Upper: the difference between the ice thickness (h) at different points
in the oscillatory cycle for simulation ifNeJeDasw, with ice flux varying according to a
square-wave, compared to the thickness in steady state (h̄) simulation ssNeJeDad0. The
results are from after the ice shelf has reached a statistically-steady state. In the legend
of this plot, τ refers to the oscillatory period. Middle: the total basal depth of the forced
ice shelf at time t = 0.25τ into a seasonal cycle. An inset gives a zoomed-in view of the
ripples. Lower: The basal slope of the ice shelf at time t = 0.25τ . The sudden changes in
slope near the grounding line cause some ringing when spectral differentiation is applied.
Despite that, the numerical shelf and plume solver did fully converge.
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smoothing was no longer needed to avoid ringing. For reasons of simplicity it

was thus decided to leave out smoothing and use an ordinary square wave and

equation (3.40) was replaced with

ug(t) =

1.5ug0, t ≤ 0.5τ
0.5ug0, t > 0.5τ

. (3.48)

The results of this simulation can be found in figure 3.34. The results are broadly

comparable the linear case. The asymmetric perturbations to ice shelf slope

noted in § 3.5.1 makes the plateaus slightly shallower than in figure 2.19 and

closer to the observations of basal terraces by Dutrieux, Stewart, et al. (2014).

Nonlinear effects smooth out some of the sharpness of the peaks as ice propagates

downstream (compared to sharper peaks in figure 2.19), slightly reducing the

differences between square wave and sinusoidal forcing towards the calving front.

Nonetheless, terrace-like features persist.

As seen in the linear analysis, the size of the ripples produced by square wave

forcing is larger than those produced by sinusoidal forcing. As before, this is because

square-wave forcing results, on average, in the inflow velocity being perturbed further

from the steady state value. The asymmetry in ripple thickness in figure 3.34 is

more pronounced than was seen in figure 3.25. This is due to the larger ripple

amplitude; the asymmetry in stretching becomes more pronounced the larger the

perturbation from steady state thickness.

3.5.5 Sensitivity to Forcing Frequency and Amplitude

Simulation ifNeJeDa was rerun a number of times with different amplitude A

and frequency ω for the ice flux forcing. The amplitude of the ice shelf ripples

(either the first or the last) was found to scale linearly with the magnitude of

the forcing (see figure 3.35). Performing a linear regression and extrapolating

backwards to A = 0 gave amplitudes of 0.051 and 0.23 for the first and last ripples,

respectively. Both of these are considered to be consistent with amplitudes of 0

within the error of the fit (which had standard deviation σ = 0.037 and σ = 0.099,

respectively), supporting a scaling h − h̄ ∝ A.
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Figure 3.35: Response of ice shelf thickness perturbations to the amplitude of ice flux
forcing A. Results are from a quarter of the way through a seasonal cycle, after the ice
shelf has reached a statistically-steady state. Other than forcing amplitude, all simulation
parameters are the same as in ifNeJeDa. Left: Ice thickness perturbations for each
simulations. Right: Amplitude of the first and last ripples on the ice shelf as a function
of the forcing amplitude.

The forcing frequency was also varied, in the same manner as in § 3.4.3, with

the results plotted in figure 3.36. As in § 3.4.3, the amplitude of the ripples

varies inversely with the inverse of the forcing frequency, as was expected from

equation (2.37). However, the relationship between amplitude and ω−1 is slightly

sublinear, the reason for which is not clear. The wave-number of the ripples is

linearly related to the forcing frequency but, once again, extrapolating backwards to

ω = 0 gave nonzero values for k (-3.46 for the first ripple and 0.51 for the last). As

before, error in the fit (σ = 0.10 and σ = 0.038, respectively) is inadequate to explain

this and it is likely due to nonlinear behaviour at very low frequencies, leading

to the relationship k ∝ (ω − ω0) for moderate frequencies, with ω0 controlled

by the low-frequency limit.

3.6 Conclusions and Discussion of Geophysical
Implications

The nonlinear simulations in this chapter produced results which were broadly in

agreement with the linear analysis of Chapter 2. Oscillations in the subglacial

discharge of 90% the mean value (ranging from 8.5×10−4 m2 s−1 to 1.6×10−2 m2 s−1,
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Figure 3.36: Response of ice shelf thickness perturbations to the frequency of ice flux
forcing, ω. Results are from a quarter of the way through an oscillatory period, after
the ice shelf has reached a statistically-steady state. Other than forcing frequency, all
simulation parameters are the same as in ifNeJeDa. Upper: Ice thickness perturbations
for each simulation. Lower left: Amplitude of the first and last ripples on the ice shelf as
a function of the inverse forcing frequency. Lower right: Wave number k of the first and
last ripple on the ice shelf as a function of the forcing frequency.

in physical units) produced ripples in the base of the ice shelf of amplitude h −

h̄ ∼ 1 m. This forcing also caused global oscillations in the ice shelf thickness.

Unlike in the linear case, however, the ice shelf displayed a noticeable bias towards

thickening, due to the sublinear relationship between upstream plume velocity

(and hence melt rate) and subglacial discharge. Seasonal oscillations in the ice

flux crossing the grounding line of 50% the mean value (with the ice velocity

varying between 1.25 km yr−1 and 3.75 km yr−1, in physical units) resulted in the

formation of ripples of amplitude h− h̄ ∼ 10 m. Towards the end of the ice shelf,

a feedback occurred whereby increased melting within these ripples caused them



3. Response of an Ice Shelf to Nonlinear Forcing 139

to grow into overdeepenings of depth ∼ 3 m, which did not happen in the linear

analysis. However, this feedback may be an artefact of setting hydrostatic pressure

gradients to zero (δ = 0) in those simulations.

The configuration of the simulations in this chapter was motivated by Pine

Island Ice Shelf. However, in error, a non-standard value of the thermal transfer

coefficient, Γ∗T , from Dallaston et al. (2015) was used. This resulted in melt rates of

∼ 10 m yr−1, while actual values have been measured to be of order 100 m yr−1 near

the grounding line (Dutrieux, Vaughan, et al., 2013). As such, the simulations in

this chapter are effectively of a cold-cavity ice shelf with the geometry of PIIS.

The deviations in configuration between the simulations and the actual PIIS

conditions makes it difficult to evaluate the geophysical implications of the results

of this chapter. Had an appropriate melt rate been used then ripples generated

by both subglacial discharge and ice flux variations would likely have been larger.

Given that the ripples formed by varying subglacial discharge are two orders of

magnitude smaller than the transverse channels observed under PIIS (Bindschadler,

Vaughan, et al., 2011), it seems implausible that this mechanism could explain

channel formation, even if the melt rate were to increase by an order of magnitude.

The ice-flux forcing produced ripples able to grow into overdeepenings and that were

only one order of magnitude smaller than the observed channels, however. On a

long enough ice shelf they might be able to grow to the size of the observed channels

on PIIS (although the observations placed these channels close to the grounding

line). It may also be possible that a higher melt rate would allow them to form

transverse channels; a higher background melt rate λm̄ would increase the growth

rate of thickness perturbation according to equation (3.44) and increased melt

perturbations λm̃ would lead to stronger melt feedback. Sergienko (2013) found

channel formation to be more significant in higher melt regimes and calculations by

Bindschadler, Vaughan, et al. (2011) indicated that most thinning in the section

of PIIS where transverse channels were observed was driven by melting rather

than stretching. However, attempts to run simulations with higher melt rates were

found to produce very strong gradients in plume thickness (when δ = 0) which
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caused the solver to fail. Even the small ripples which were produced in these

simulations would tend to alter the flexural stress, as described by Vaughan et al.

(2012) for full-sized channels. This may lead the ice to more readily crack, reducing

buttressing and thus increasing the rate of ice loss.

The ice flux forcing does, however, produce features which appear qualitatively

similar to the basal terraces observed under PIG ice shelf by Dutrieux, Stewart,

et al. (2014), especially when the ice is forced by a square wave (§ 3.5.4). The

vertical separation between successive terraces is of order ∼ 10 m, comparable

to the observations of Dutrieux, Stewart, et al. (2014) under the PIG ice shelf.

However, the simulated terraces are a few kilometres in length, at order of magnitude

larger than observations. This means that the slopes separating the terraces in

figure 3.34 (∼ 1◦) are much more gradual than those under Pine Island (∼ 30◦).

A higher frequency forcing, such as that provided by the spring-neap tidal cycle

(Rosier et al., 2017), would generate ripples of the correct wavelength to agree

with observations. If the melt rate were similar to that observed for PIIS then

the terraces would likely be of the correct vertical scale as well. Note that a very

large number of grid points would be needed to resolve features of that horizontal

size, making such a simulation challenging.

Interactions between the ice shelf, plume, and seasonal variability could also

have consequences for ocean circulation. Temporal variations in subglacial discharge

result in lower melt rates and plume outflow from under the ice shelf than would

be expected were the subglacial discharge at a constant, average value. This is due

to the plume dynamics and is not related to coupling with the ice shelf. While ice

flux variations can give rise to local deviations in the melt rate, the ice thickness

perturbations don’t display a noticeable thickening or thinning bias, indicating the

average melt rate is not significantly altered. However, the changes to the ice shelf

geometry affect the plume dynamics. This means that, on average, the volume flux

of the plume increases by about 0.2m2 s−1 (about 2%), as illustrated by figure 3.37,

which would slightly strengthen the overturning cell underneath the ice shelf.
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Figure 3.37: Perturbations to the volume flux (DU) relative to that in steady state
(D̄Ū) at different points in the seasonal cycle of simulation ifNeJeDa with varying ice
flux, after it has reached a statistically-steady state. The steady state values are taken
from simulation ssNeJedadn0.

The simulations in this section made numerous simplifying assumptions. Some

of these, such as the use of Newtonian ice rheology and a simple entrainment

parameterisation, were tested and found not to alter the results. The assumption

of 1-D flow would be appropriate for ice shelves which have weak variation in the

y-direction, e.g. due to being very large or experiencing only limited drag from the

side-walls. The melting temperature of ice and the ambient ocean properties were

assumed to be uniform, whereas around Antarctica the ocean tends to be warmer

at depth and the melting point also lower at depth. This would tend to concentrate

melting near the grounding line of the ice, giving rise to a different steady-state

thickness profile. In these simulations, melting was weak compared to stretching

near the grounding line, but this balance might be altered with a more accurate

treatment of varying ocean properties or with different thermal forcing that allows

stronger melt. If so, it is possible that the melt-feedback seen in figure 3.27 could

be initiated closer to the grounding line. Conversely, if ocean stratification and the
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depth dependence of freezing temperatures were accounted for then melting would

tend to be lower towards the calving front, weakening the melt-feedback there.

The analysis has treated variation in subglacial discharge and ice flux indepen-

dently. However, increases in subglacial discharge would be expected to correlate

with increased ice flux and velocity (Bartholomew et al., 2010). Whereas higher ice

flux gives rise to thicker ice, increased subglacial discharge would tend to thin the

ice. Thus, these processes would counteract each other and the subglacial discharge

variations would slightly reduce the magnitude of the ripples formed by the ice flux

variations. In a regime where ice thinning is dominated by melting rather than

stretching, then the countervailing forcing from subglacial discharge would likely be

more severe and may strongly reduce the magnitude of the ripples that form.
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The 1-D plume model used in Chapters 2 and 3 neglected the Coriolis force.

While this is a reasonable approximation for narrow ice shelves, past modelling has

shown that the Coriolis force steers plume flow within subglacial cavities of wide ice

shelves (Payne et al., 2007; Sergienko, 2013; Jordan et al., 2018, e.g.). The results

of Chapter 3 did not exhibit ripples in ice shelves of the size seen by Bindschadler,

Vaughan, et al. (2011), but the plume channelisation feedback may allow the small

existing perturbations to grow to the size of those ripples. However, the 1-D plume

model used was unable to capture this effect. To do so requires modelling the

transverse plume velocity. Although 2-D plume models have been developed and

applied before (e.g. Payne et al., 2007; Gladish et al., 2012; Sergienko, 2013), they are
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Figure 4.1: Left: A cartoon diagram of the horizontal integration performed on the plume
equations. Arrows are shown for each component of the horizontal velocity, illustrating
the assumptions (described in § 4.2) that the velocity is uniform over most of the width
of the plume, except in a boundary layer near the side-wall. The model will be applied in
the Southern hemisphere, but the illustration has been reflected in y for reasons of visual
clarity. Right: A planar view of the horizontal integration, with velocity streamlines
indicating the assumed flow profile of the plume. At the opposite sidewall, outside of the
region ∆y which is horizontally-integrated, the plume would turn and form a boundary
current.

computationally expensive. Here a different approach is taken, with a “horizontally

integrated” 1-D model, containing information on the transverse flow, developed

instead. While Jenkins (2016) developed a 1-D Ekman layer model which included

rotation, unlike the model described below it did not include advection or inertia. In

addition to its computational simplicity, the horizontally-integrated model developed

here provides a conceptual tool which can be useful in understanding of the results

of observations and more complex simulations.

To develop such a horizontally-integrated model, the averaging approach that

has proved useful for developing plume models (Ellison and Turner, 1959; Manins

and Sawford, 1979) is adapted. In this model, illustrated in figure 4.1, the plume

variables are averaged over both the thickness of the plume and also some lateral

width ∆y across the shelf. At the lower limit of this domain in y is a sidewall of

the subglacial cavity, through which there can be no plume flow. The location of

the upper limit is a parameter which can be adjusted, but it is assumed to be an

open boundary through which transverse outflow is allowed. In order for transverse

flow to begin there must be something to break the horizontal symmetry in the
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plume equations. This naturally arises due to the Coriolis force. Simulations (e.g.

Millgate et al., 2013; Jordan et al., 2018) indicate that, in a rotational plume such

as this, there would be a narrow longitudinal boundary current on the opposite

side of the cavity. The presence of such a boundary current is assumed here, rather

than being explicitly modelled; this current would act to drain the transverse flux

of water out from under the ice shelf.

4.1 Modifications to the Plume Equations

To derive the horizontally integrated equations, one begins with the 2-D depth-

integrated plume model in equation (3.6). However, the momentum balance is

modified to capture the Coriolis force using the f -plane approximation with Coriolis

parameter f = 2Ω sin(φ) (where Ω is the Earth’s rotational frequency and φ is

the latitude). In dimensionless form this becomes

∇ ·
(
D~UU

)
= D(ρa − ρ) (bx − δDx) + ν∇ · (D∇U)− µ|~U |U + δD2

2 ρx + ΦDV,
(4.1a)

∇ ·
(
D~UV

)
= D(ρa − ρ) (by − δDy) + ν∇ · (D∇V )− µ|~U |V + δD2

2 ρy − ΦDU.
(4.1b)

Here, Φ ≡ fx0/U0 is a dimensionless parameter, corresponding to the inverse Rossby

number, and all other symbols were defined in Chapters 1 and 3. Using the scales

described in the previous chapter, a typical value of Φ for an Antarctic ice shelf is

-9.94, indicating largely geostrophic flow. Coriolis forces do not play a significant

role in the ice shelf, where the Ekman number is large.

The plume variables are assumed to be separable in x and y, with the forms

D(x, y) = D̂(x)fD(y), U(x, y) = Û(x)fU(y), . . . (4.2)

and similar for V , T , and S. As in Chapter 3, the temperature and salinity are offset

such that the temperature and salinity difference are zero for ambient conditions,

although the results presented hold regardless of the offset. A width-averaging

operator, represented by an over-bar, is defined according to

G = 1
∆y

∫ y2

y1
G(y)dy, (4.3)
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where G is an arbitrary y-dependent variable and ∆y = y2 − y1. The shape

functions f(y) are defined such that

fD = 1, fU = 1, . . .

There is no general way to relate |̂~U |(x) to Û(x) and V̂ (x), so instead it is treated

as an independent variable with its own shape function:

|~U(x, y)| = |̂~U |(x)f|~U |(y). (4.4)

However, |̂~U | =
√
Û2 + V̂ 2 is exactly true if fU(y) = fV (y) or approximately

true if U � V or V � U .

The relationships in equations (4.2) and (4.4) were substituted into the plume

equations (3.6) and (4.1). For simplicity, the ambient conditions were assumed

to be uniform and lateral variations in ice shelf thickness were neglected so that

b was a function of x and t only. Integrating the resulting equations from y1 to

y2, then dividing by ∆y, gives the results below (hats have been dropped from

the x-dependent variables for convenience going forward, with any y-dependence

explicitly specified).

αDU
d

dx
(DU) + fDfV

∆y

∣∣∣∣∣
y2

y1

DV = e+m, (4.5a)

αDU2
d

dx

(
DU2

)
+ fDfUfV

∆y

∣∣∣∣∣
y2

y1

DUV = Dρa
d

dx
(b− δαD2D) (4.5b)

−D
(
ρ
db

dx
− δαD2 ρ̃

dD

dx

)

+ ναDU
d

dx

(
D
dU

dx

)
+ ν

DU

∆y fDf
′
U

∣∣∣∣∣
y2

y1

− µα|~U |U |~U |U + δαD2D2

2
dρ̃

dx
+ ΦαDVDV,

αDUV
d

dx
(DUV ) + fDf

2
V

∆y

∣∣∣∣∣
y2

y1

DV 2 = ναDV
d

dx

(
D
dV

dx

)
+ ν

DV

∆y fDf
′
V

∣∣∣∣∣
y2

y1

(4.5c)

− µα|~U |V |~U |V −
δD2

2∆yf
2
D[ρa − ρ(x, y)]

∣∣∣∣∣
y2

y1

− ΦαDUDU,
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αDUS
d

dx
(DUS) + fDfSfV

∆y

∣∣∣∣∣
y2

y1

DSV = eSa + ναDS
d

dx

(
D
dS

dx

)
(4.5d)

+ ν
DS

∆y fDf
′
S

∣∣∣∣∣
y2

y1

+mSm − γS(S − Sm),

αDUT
d

dx
(DUT ) + fDfTfV

∆y

∣∣∣∣∣
y2

y1

DTV = eTa + ναDT
d

dx

(
D
dT

dx

)
(4.5e)

+ ν
DT

∆y fDf
′
T

∣∣∣∣∣
y2

y1

+mTm − γT (T − Tm),

with the constants involving α defined below. Capturing transverse diffusion requires

knowledge of f ′U = dfU/dy, f ′V = dfV /dy, etc. This derivation assumes the linear

equation of state given in equation (1.10), for which

ρ = ρref [1 + βS(αDSS − Sref)− βT (αDTT − Tref)], (4.6)

and

ρ̃ = ρref [1 + βS(α̃DSS − Sref)− βT (α̃DTT − Tref)]. (4.7)

When using the Jenkins (1991) entrainment parameterisation, e takes the same form

as equation (1.11). The one-equation melt formulation of equation (2.1) becomes

m = ζ1ζ2|~U |(α|~U |TT − Tm), (4.8)

when horizontally integrated. The ice is assumed to be impermeable to salt,

meaning γS(S − Sm) = mSm = 0. After horizontal integration, the thermal

transfer term becomes

γT (T − Tm) = ζ1|~U |(α|~U |TT − Tm). (4.9)

These parameterisations are used throughout this chapter. The α coefficients

in these equations contain information on the transverse shape of the plume

variables and are defined as

αDU = fDfU , αDU2 = fDf 2
U , αD2 = f 2

D,

αDV = fDfV , αDUV = fDfUfV , α|~U |V = f|~U |fV ,

α|~U |U = f|~U |fU , αDUS = fDfUfS, αDUT = fDfUfT , (4.10)

α|~U |T = f|~U |fT , αDS = fDfS, αDT = fDfT ,

α̃DS = f 2
DfS
αD2

, α̃DT = f 2
DfT
αD2

.
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The second term on the left hand side of equations (4.5a)–(4.5e) represents

transport via lateral inflow and outflow from the region of integration. The terms

on the right hand side containing y-gradients represent the depth-integrated viscous

shear at the lateral boundaries and the diffusive flux of scalar quantities in and out

of the integration region. To determine these values and those in equation (4.10)

requires further assumptions about the transverse profile of the plume (in the same

way that interfacial fluxes are parameterised when deriving a plume model by

depth integration).

4.2 Solving for a Steady, Uniform Plume

Some basic insight into the behaviour of this model can be gained by making

various simplifying assumptions. First, diffusion is neglected (ν ≈ 0) so that this

becomes an initial value problem which can easily be integrated numerically from

the grounding line. The lower limit of the horizontal integration, y1, was taken

to correspond to a side-wall of the subglacial cavity, meaning there is no inflow

here. All plume variables were assumed to be approximately uniform across the

integration width, including at the lateral boundary y = y2. For V and U there

would be a narrow boundary layer near the sidewall where there is a transition

from zero-velocity to the width-averaged velocity, as illustrated in figure 4.1. This

boundary layer is assumed to be sufficiently narrow not to contribute significantly

to integrals when taking average values or computing the α terms.

With these assumptions, all α values are approximately equal to 1, fD(y1) ≈

fS(y1) ≈ fT (y1) ≈ 1, fU(y1) ≈ fV (y1) ≈ 0, fD(y2) ≈ fU(y2) ≈ fV (y2) ≈ fS(y2) ≈

fT (y2) ≈ 1, and f ′U(y2) ≈ f ′V (y2) ≈ f ′S(y2) ≈ f ′T (y2) ≈ 0. These assumptions

are sufficient to close the model. Under these conditions, the term involving δ

in equation (4.5c) goes to zero because f 2
D(y2) ≈ f 2

D(y1). The same scales and

parameter values were used as in Chapter 3. Initial conditions at the grounding

line (x = 0) were set to D = ε, U = Qg/ε, V = 0, S = Sm, and T = Tm (where

ε is some small value and Qg = 10−3 is the subglacial discharge), corresponding

to imposing fresh subglacial discharge at the melting temperature, with negligible
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Figure 4.2: Results of solving the initial value problem provided by the dimensionless
horizontally integrated plume equations without diffusion. The ice shelf has a constant
basal slope bx = 0.2 and the plume variables are taken to be approximately uniform across
the width of integration, except for a narrow boundary layer where V → 0 and U → 0 at
the sidewall.

lateral momentum. For initial illustration, the ice shelf was set to have a constant

basal slope of bx = 0.2 (a moderate slope in between those typical near the grounding

line and those near the calving front) and the plume width was set to ∆y = 0.05 (a

narrow plume, 690 m wide). Using the lsoda Adams method initial value problem

solver in SciPy (Jones et al., 2001), the system of equations was integrated to

give the results in figure 4.2.

There are clearly two distinct regimes to this solution. Near the grounding line, a

transient regime is characterised by initial growth of plume thickness and transverse

velocity V . Longitudinal velocity U , however, declines as the Coriolis force rotates

the plume flow into a cross-slope direction. Eventually the high value of V causes

both volume and transverse momentum to be drained away via the outflow, until

a new balance is obtained. At this point, the plume transitions to an asymptotic

state where the variables no longer change downstream. Examining the relative

magnitude of different terms in equation (4.5) shows that, in this regime, forcing
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terms (entrainment, melting, buoyancy, Coriolis force, and drag) are balanced by

lateral drainage of the plume at y2. This can be expressed as

fD(y2)fV (y2)DV = E0|~U ||bx|∆y +
[
ζ1ζ2|~U |(α|~U |TT − Tm)∆y

]
(4.11a)

fD(y2)fU(y2)fV (y2)DUV = (D[ρa − ρ]bx + ΦαDVDV − µα|~U |U |~U |U)∆y (4.11b)

fD(y2)fV (y2)2DV 2 = (−ΦαDUDU − µα|~U |V |~U |V )∆y (4.11c)

fD(y2)fS(y2)fV (y2)DSV = (E0|~U ||bx|Sa + ζ1ζ2|~U |[α|~U |TT − Tm]Sm)∆y (4.11d)

fD(y2)fT (y2)fV (y2)DTV = (E0|~U ||bx|Ta − ζ1|~U |[1− ζ2Tm][α|~U |TT − Tm])∆y.
(4.11e)

Terms indicating the shape function value at the upper boundary, such as fD(y2),

are retained for generality. The melt term in square brackets in the continuity

equation (4.11a) is much smaller than the others and can, in certain situations,

be ignored. This convention was not used for square brackets in any of the

other equations.

Dividing equations (4.11d) and (4.11e) by equation (4.11a), the asymptotic

temperature and salinity can be solved for exactly:

T =
−A±

√
A2 + 4ζ1ζ2α|~U |TfT (y2)(E0|bx|Ta + ζ1Tm − ζ1ζ2T 2

m)
2ζ1ζ2α|~U |TfT (y2) , (4.12)

S =
E0|bx|Sa + ζ1ζ2(α|~U |TT − Tm)Sm
fS(y2)(E0|bx|+ ζ1ζ2[α|~U |TT − Tm]) , (4.13)

where A = E0|bx|fT (y2) − ζ1ζ2Tm[fT (y2) + α|~U |T ] + α|~U |T ζ1. Assuming e � m in

equation (4.11a), then D can be eliminated from equation (4.11c) to express the

transverse velocity in terms of the longitudinal velocity according to

V =
√√√√ −E0ΦU∆y|bx|αDU
fD(y2)fV (y2)[E0fV (y2)|bx|+ µα|~U |V ] . (4.14)

This result is only valid in the Southern hemisphere, where Φ < 0. In the Northern

hemisphere the entire model is invalid and would need to be reformulated around

the opposite sidewall.
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Meanwhile, using equations (4.11a) and (4.12)–(4.14) to eliminate DV , T , and

S, the longitudinal velocity can be expressed as the cubic equation

0 = fD(y2)2fV (y2)2
(
fU(y2) +

µα|~U |U
E0|bx|

)2

U3

− 2fD(y2)fV (y2)
(
fU(y2) +

µα|~U |U
E0|bx|

)
Φ∆yαDVU2 + Φ2∆y2α2

DVU

+
(ρa − ρ)2|bx|∆yfD(y2)fV (y2)[E0fV (y2)|bx|+ µα|~U |V ]

E0ΦαDU
. (4.15)

The plume thickness can not be obtained in general terms without knowing

something about the transverse structure of the velocity components so that |~U |

can be calculated. If that value is known then

D = E0|~U ||bx|∆y
fD(y2)fV (y2)V , (4.16)

where V is determined via equation (4.14). When making the assumption that

fU(y) = fV (y), as done to calculate the results in figure 4.2, |~U | =
√
U2 + V 2

and equation (4.16) becomes

D = E0|bx|∆y
√

1− E0bx + µ

E0Φ∆y|bx|
U.

These expressions allow the asymptotic state of the plume to be easily calculated

for a wide range of parameter values. The results of doing so can be seen in

figures 4.3 and 4.4, where those parameters not being varied have the same values

as used to produce figure 4.2. Asymptotic salinity and temperature only depend on

the shelf slope, so are only plotted for that parameter (figure 4.3). Also plotted are

the asymptotic results obtained by numerically integrating the full plume equation,

which agree well with the analytic predictions. These could not be found for

strongly negative values of the Coriolis parameter or larger values of ∆y. In these

cases the plume would transition from super- to sub-critical flow and develop a

shock, causing the integration to fail. Including diffusion in the equations would

alleviate this problem by smoothing out the shock. The initial conditions of the

plume at the grounding line do not alter the asymptotic state, only affecting the
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Figure 4.3: Predicted (lines) and numerically-determined (circles) asymptotic values
of salinty S and temperature T for the horizontally-integrated plume equations with
different shelf slopes bx. Both variables are offset such that their ambient values are 0.

initial transient region. This can be seen from equations (4.12)–(4.16), which have

no dependence on initial conditions.

Salinity and temperature both increase with the shelf slope (figure 4.3), as this

leads to greater entrainment and thus brings them closer to the ambient values.

The increased entrainment also causes the plume thickness to grow with shelf slope

(figure 4.4a, blue line). Thicker plumes are less affected by drag forces, allowing the

transverse velocity to increase with slope as well (figure 4.4a, red line). Initially,

increased buoyancy forces causes the longitudinal velocity to grow with the slope,

but eventually interactions with drag and the Coriolis force cause it to gradually

slow (figure 4.4a, green line). Increasing the magnitude of the Coriolis parameter

(i.e., increasing |Φ|) tends to reduce the magnitude of the longitudinal velocity

and the plume thickness (figure 4.4b). The transverse velocity, on the other hand,

increases with |Φ| as the plume is more strongly rotated. This strengthens the

outflow, explaining the decreases in D and U due to enhanced export of plume

mass and momentum. Increases to the drag impede the flow and results in a
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Figure 4.4: Predicted (lines) and numerically-determined (circles) asymptotic values for
the horizontally-integrated plume equations with different parameter choices. Parameters
not being varied are fixed to the values used to produce figure 4.2. Note that Φ < 0 in
panel (b).

smaller transverse velocity, thus compressing the plume and increasing its thickness.

Initially drag causes the longitudinal velocity to grow as it disrupts the rotation

of the plume into the transverse direction. Even when U begins to decline, the

longitudinal velocity does so more gradually than the transverse velocity (which is

monotonic decreasing with µ). The changes to the variable values with ∆y reflect

the plume’s transverse structure, which is discussed in § 4.3.

The results of equations (4.12)–(4.16) were calculated assuming a constant basal

slope of the ice shelf. However, it was found that the values of plume variables

calculated by numerical integration using an ice shelf with a gradually varying slope

can be approximated well using the local slope value in the analytic equations.

This can be seen in figure 4.5, where the slope is set according to the analytic ice

shelf thickness of equation (2.21) for X = 7. There is good agreement between
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Figure 4.5: Comparison of numerically determined (blue solid lines) and analytically
predicted (green dashed lines) values for horizontally-integrated plume variables when the
ice shelf slope varies along its length according to the analytic solution in equation (2.21),
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the numerical results and the analytic predictions after the plume approaches its

asymptotic state at around x ∼ 0.5, which is commensurate with the scale for

transient adjustment in figure 4.2.

4.3 Asymptotic Transverse Structure

Although the previous section assumed the plume variables were approximately

uniform in the transverse direction, the results in figure 4.4 ultimately prove

inconsistent with this assumption. Panel (d) of figure 4.4 shows that the thickness

and both components of the velocity of the plume vary as the integration width is

increased. This indicates a nonuniform transverse structure to the plume, because

width-averaged variables vary with y. The width-averaged thickness, D, appears

to grow linearly with ∆y, while the relationships for longitudinal and transverse

velocity are less clear. A resolution to this issue is explored in the following two

subsections, where an IVP is derived which can be solved for fD, fU , and fV .

However, as an intermediate step it is first useful to analyse the limits for the

fD ≈ fU ≈ fV ≈ 1 case to build insight.

4.3.1 Limit Analysis

If there is a power-law relationship between the variables and ∆y, then the slope of

a log-log plot can be used to determine the exponent (figure 4.6a). The derivative

d log(D)/d log(∆y) was evaluated using the Chebyshev pseudo-spectral method (see

§ 3.1.1), along with similar derivatives for U and V , showing two limiting cases

for the transverse plume structure (figure 4.6b). Salinity and temperature do not

depend on ∆y and thus were not analysed. For ∆y . 10−3,

D ∝ ∆y2/3, U ∝ ∆y1/3, V ∝ ∆y2/3,

while for ∆y & 1,

D ∝ ∆y, U ∝ ∆y−1, V ∝ ∆y0.
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Figure 4.6: (a) Log-log plot of how asymptotic values for plume variables depend on the
width over which they are horizontally integrated. (b) The derivative of the logarithm
of plume variables with-respect-to to the logarithm of ∆y. This reveals the power laws
which these variables obey at different limits for ∆y.

The lower limit corresponds to a plume width of 13.8 m when the longitudinal

length-scale is x0 = 13.8 km. At this scale it is questionable if the plume model

or the balances in equation (4.11) would continue to hold. Thus, it is considered

unlikely that this limit corresponds to physical boundary-layer behaviour.

The upper limit remains of interest, however. At this point it is useful to adopt

slightly altered notation with which to express the transverse shape of the plume in

an un-normalised fashioned. Define FD(x, y) = D(x,∆y)fD(y,∆y), where D(x,∆y)

is the average thickness over ∆y and fD(y,∆y) has been normalised over the same

range. The same procedure can be used for the other plume variables. Using

D(x,∆y) = 1
∆y

∫ ∆y

0
FD(x, y)dy ⇒

∫ ∆y

0
FD(x, y)dy = ∆yD(x,∆y)

and differentiating with respect to ∆y, it can then be shown that

FD(x, y) = y
∂D(x,∆y)

∂∆y

∣∣∣∣∣
∆y=y

+D(x,∆y = y). (4.17)

With the power law D(x,∆y) = BD(x)∆yn, where BD(x) = D(x,∆y = 1), this

gives the result

FD(x, y) = (n+ 1)BD(x)yn. (4.18)
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For the upper limit of plume width, this means

FD = 2BDy, FV = BV (4.19)

However, there is a singularity for n = −1, as was the case for longitudinal

velocity. In this case one finds

FU = BUδ(y), (4.20)

where δ(y) is the Dirac delta function. Results for FD, FU , etc. can be normalised

for a given ∆y to get the corresponding shape functions fD, fU , etc. with which

to calculate |~U | and the α values in equation (4.10). However, the singularity at

0 caused by the Dirac delta means not all of these results converge.

It is worth taking a step back to consider what the result of FU means physically.

In effect, it is saying that all longitudinal flow is confined to a narrow layer next

to the side-wall of the cavity, the width of which is much less than 1. This causes

the width-averaged value of U to be inversely related to ∆y, analogous to the 1/r

drop-off in electric field strength from a line of charge. However, figure 4.4d clearly

shows that the structure of the longitudinal velocity at this scale is not actually

a delta function. Rather, FU is just some function which is approximately zero

when y & 1. It could, for example, be a box function of width less than one. In

the electrostatic analogy, this corresponds to a finite but compact charge being

approximated as a point source sufficiently far away. However, the exact value

of the α coefficients will depend on this structure.

4.3.2 A Transverse Initial Value Problem

While the previous section gives insight into the transverse structure of the plume,

it can not be taken to be more than qualitatively accurate. In particular, its results

were found by looking at how the plume’s average values changed as calculated

when assuming it to be uniform. These were inconsistent assumptions. However,

the approach of § 4.3.1 indicates it may be useful to consider the transverse

structure in more detail. Realising that, in the asymptotic region, gradients in
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x are approximately zero while gradients in y are still significant, the 2-D plume

equations (3.6) and (4.1) can be simplified to become a system of ODEs in the

transverse direction. Once again assuming that diffusion is negligible, the following

initial value problem is obtained:

d

dy
(DV ) = e+m (4.21a)

d

dy
(DV U) = D(ρa − ρ)bx − µ|~U |U + ΦDV (4.21b)

d

dy
(DV 2) = −D(ρa − ρ)δDy − µ|~U |V + δD2

2 ρy − ΦDU (4.21c)

d

dy
(DV S) = eSa +mSm − γs(S − Sm) (4.21d)

d

dy
(DV T ) = eTa +mTm − γT (T − Tm). (4.21e)

Taking y = 0 to be the side-wall gives boundary conditions U(0) = V (0) = 0,

while figure 4.4d suggests D(0) = 0. These conditions are singular, however, and

therefore can not be used to initiate an IVP solver. Instead, boundary conditions

are calculated at some small distance y = ε using the predictions of equations (4.12)–

(4.16) with y2 = 2ε. It is assumed that in this narrow region D, U , and V vary

linearly in y, while S and T are constant. The average values which the equation

calculates will then exist at y = y2/2. In effect, this is a linearisation of the

plume equations. These assumptions result in fD(y2) = fU(y2) = fV (y2) = 2,

fT (y2) = fS(y2) = 1, αDU = αDV = α|~U |U = α|~U |V = 4/3, and α|~U |T = 1 for

use in the analytical predictions equations. For the integration to succeed it was

necessary to set δ = 0, as was done in § 3.5 and is common in published work

(e.g. Jenkins, 1991, 2011; Dallaston et al., 2015). Strangely, for small but non-zero

values (δ ∼ 10−4) the system enters a non-physical regime in which longitudinal

velocity grows linearly in y and thickness grows quadratically, reaching massive

values that exceed the cavity thickness within 30 m of the side-wall.

The results of integrating equation (4.21) in y, using parameter values from

table 3.1 and a basal slope of bx = 0.2, are plotted in figure 4.7 over the domain

y ∈ [0, 2]. As the analysis in § 4.3.1 predicted, at large scales the plume thickness is
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Figure 4.7: The results of solving the initial value problem describing the transverse
structure of the plume in the asymptotic regime. The ice shelf is taken to have a constant
basal slope bx = 0.2.

approximately linear in y, while the longitudinal velocity decays and the transverse

velocity approaches an asymptote. While the preliminary analysis of § 4.3.1 appeared

to indicate that U = 0 for large values of y, figure 4.7 shows U > 0 when accounting

for the detailed structure. The salinity and temperature remain uniform. The

shape coefficients and values of the shape functions at the boundaries of a plume

can thus be calculated for the desired width and parameter choices. While these

results are for the asymptotic regime, it seems a reasonable approximation to apply

them to the entire length of the plume in the absence of knowledge of transverse

structure in the initial transient region.

There remains a question of how to relate the horizontally-averaged velocity

norm, |~U |, to the horizontally-integrated values of the two component U and V . As

the two components do not have the same transverse shape and are of comparable

magnitude, |~U | 6=
√
U2 + V 2. In principle a function θ could defined such that

|~U | = θ(U/V )
√
U2 + V 2.
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Figure 4.8: Asymptotic values for the horizontally-integrated plume, predicted from
equations (4.12)– (4.16) (lines) and numerically determined by integrating equation (4.5)
(circles). The plume is not assumed to be uniform here, with shape coefficients determined
for each set of parameter values by integrating the IVP in y given in equation (4.21).

This function could be calculated numerically from the results of the transverse

integration. However, the value of |~U | is only used in parameterisations of turbulent

processes, which come with uncertainty. Rather than averaging the parameterisation,

it is thus not unreasonable to set θ(U/V ) = 1. This returns to the usual relationship

between these variables. This approach was used in all subsequent calculations.

When plume thickness, salinity, and temperature were taken to be uniform in

the transverse direction, the hydrostatic term in equation (4.5c) went to zero. This

was a useful simplification when deriving the asymptotic results in § 4.2. However,

it is now clear that the thickness is not uniform in y, meaning that hydrostatic

gradients will play a role. By integrating the transverse IVP in equation (4.21)

for each combination of parameter values and then solving the longitudinal IVP

in equation (4.5), figure 4.4 was recreated using the appropriate shape coefficients
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Figure 4.9: Comparison of the ice-ocean boundary layer velocities (arrows) of the
horizontally integrated model presented in this chapter and those found by Jordan et al.
(2018) using mitGCM 3-D ocean simulations. Also plotted is the basal draft of the ice
shelf in each case (colours). Note the different scales of the arrows in the two subplots.
The horizontally-integrated results assume outflow at the upper y-boundary, unlike the
Jordan et al. (2018) model which assumes no-flux conditions. This results in a western
boundary current being resolved in the (a), which is assumed but not specifically solved
for in the theory in (b).

(see figure 4.8). This revealed good agreement between the asymptotic results and

those from integrating the full set of equations, with differences that are slightly

larger than in figure 4.4, but still small.

A recent paper (Jordan et al., 2018) calculated ice-ocean boundary layer velocity

fields for an idealised ice shelf geometry using the fully 3-D ocean model mitGCM.

This particular study is focussed on here as the idealised geometry is useful for

comparison with the present theory. Of especial interest is the state of the “warm

cavity” simulation in the first year of the simulation. This simulation featured

uniform ambient salinity and temperature in the cavity as has been assumed when

solving the plume equations in this chapter. Comparing the ice-ocean interface

velocity in that simulation (figure 4.9a) to the plume velocity predicted by the

horizontally-integrated model (figure 4.9b) allows the theory to be qualitatively

validated. In order to make a fair comparison, the horizontally-integrated calculation

was done for the same width of domain (∆y = 60 km), Coriolis parameter (f =

1.37 × 10−4 s−1), average basal slope (bx ≈ 83.3 m km−1), and thermal transfer

coefficient (Γ∗T = 1.33× 10−3, approximately 20 times greater than the value given
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in table 3.1) as the mitGCM run. The ambient temperature and salinity values for

the “warm cavity” 3-D simulation were comparable to those used for the horizonally-

integrated model in this chapter. As the mitGCM simulation did not include

subglacial discharge, the plume was given boundary conditions of D = 4 × 10−7

and U = 2 × 10−3 at x = 0, the smallest values for which the IVP could be

successfully solved. It was not possible for the horizontally integrated model to

capture the transverse basal slope of the ice shelf which was present mitGCM

simulation, so a planar basal slope was adopted.

Comparing the results in figure 4.9 shows a remarkable degree of similarity, given

the simplicity of the horizontally-integrated model and the fact that it took mere

seconds to perform that calculation on a desktop computer. Both show relatively

low velocity near the lower y-boundary, with a significant longitudinal component.

However, away from that boundary the velocity grows and tends to be oriented in

the across-shelf direction. Both results show that the magnitude of the velocity

will tend to be larger further away from the grounding line and predict similar

magnitudes. The most noticeable difference is the strong boundary current at the

upper limit of y in the mitGCM case. The assumptions of the horizontally-integrated

model do not allow this to be explicitly captured in the present theory, as the upper

boundary is taken to permit outflow whereas in the mitGCM run that boundary

had a no-flux condition. However, the presence of such a boundary current, outside

the region of ∆y, is assumed in the horizontally-integrated model. Other differences

include the stronger and more transverse flow at the grounding line in mitGCM

and larger longitudinal velocity components in the upper half of the plot for the

horizontally integrated model. Some of these characteristics may be explained by

the slightly different ice shelf shape in mitGCM.

4.4 Relaxing the Seperability Assumptions

The above approach works well when calculating the state of a plume under an ice

shelf with a constant basal slope. However, ice shelves typically have a varying slope.

The value of many of the shape factors depend on the basal slope (figure 4.10),
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Figure 4.10: Plots indicating how different factors describing the transverse shape of
the plume vary with the basal slope bx of the overlying ice shelf. The values of fS(y2)
and fT (y2) are not plotted as they are unity for all values of bx. Values of f ′U (y2), f ′V (y2),
f ′S(y2), f ′T (y2) do vary but remain close to zero. Unplotted α coefficients are equal to
unity for any basal slope, with the exception of αDUS and αDUT which are both equal to
αDU .

which means they would not be constant throughout the plume domain. If the

slope varies gradually then the coefficients might be calculated using the local slope

values, as done successfully for the analytic predictions of the asymptotic values

(figure 4.5). However, this is unlikely to work in cases where the slope changes

rapidly and, more fundamentally, the assumption of separability in x and y does

not rigorously apply. This problem is ignored for the remaining calculations in this

chapter, but it is worth exploring how it might be addressed in future.

Consider if the separation of variables is redefined such that

D(x, y) = fD(x, y)D̂(x), U(x, y) = fU(x, y)Û(x), . . . (4.22)

where fD, fU , etc. remain normalised over y ∈ [y1, y2] for all x. For the most part,

the horizontal integration can proceed as before. However, the diffusive terms can

not be integrated quite so easily. Consider, for example viscosity in the x-direction:∫ y2

y1

∂

∂x

(
D
∂U

∂x

)
dy = d

dx

(∫ y2

y1
D
∂U

∂x

)

= d

dx

(
D̂(x)

∫ y2

y1
fD(x, y)

[
dÛ(x)
dx

fU(x, y) + Û(x)dfU(x, y)
dx

]
dy

)

= d

dx

(
αDUD̂

dÛ

Dx
+ D̂Û

∫ y2

y1
fD
∂fU
∂x

dy

)
.
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The first term in the parentheses on the right hand side of the equation is analogous

to the diffusion terms in equation (4.5) and can easily be integrated. However, it

is not clear how to calculate the value of the second term. The simplest approach

would be to set it to zero, noting that the diffusion term is simply a parameterisation

of turbulence in any case and it is therefore acceptable to alter that parameterisation

slightly (much as argued for the relationship between |~U |, U , and V ). With this

approximation, the plume equations take the form

d

dx
(αDUDU) + fDfV

∆y

∣∣∣∣∣
y2

y1

DV = e+m, (4.23a)

d

dx

(
αDU2DU2

)
+ fDfUfV

∆y

∣∣∣∣∣
y2

y1

DUV = D(ρa − ρ) db
dx

(4.23b)

− δ

2
d

dx

(
αD2D2[ρa − ρ̃]

)
+ ν

d

dx

(
αDUD

dU

dx

)
+ ν

DU

∆y fDf
′
U

∣∣∣∣∣
y2

y1

− µα|~U |U |~U |U + ΦαDVDV,
d

dx
(αDUVDUV ) + fDf

2
V

∆y

∣∣∣∣∣
y2

y1

DV 2 = − δD2

2∆yf
2
D[ρa − ρ(x, y)]

∣∣∣∣∣
y2

y1

(4.23c)

+ ν
d

dx

(
αDVD

dV

dx

)
+ ν

DV

∆y fDf
′
V

∣∣∣∣∣
y2

y1

− µα|~U |V |~U |V − ΦαDUDU,
d

dx
(αDUSDUS) + fDfSfV

∆y

∣∣∣∣∣
y2

y1

DSV = eSa + ν
d

dx

(
αDSD

dS

dx

)
(4.23d)

+ ν
DS

∆y fDf
′
S

∣∣∣∣∣
y2

y1

+mSm − γS(S − Sm),

d

dx
(αDUTDUT ) + fDfTfV

∆y

∣∣∣∣∣
y2

y1

DTV = eTa + ν
d

dx

(
αDTD

dT

dx

)
(4.23e)

+ ν
DT

∆y fDf
′
T

∣∣∣∣∣
y2

y1

+mTm − γT (T − Tm).

The main difference from equation (4.5) is that the α coefficients (defined the same

way as before) are now a function of x and as such must remain inside derivatives.

The hydrostatic terms in the x-momentum equation have also been rearranged

slightly to better facilitate integration.
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It should be noted, however, that the shape coefficients in figure 4.10 show only

modest variations. Even the largest changes are less than a factor of 3, with bx

varying by two orders of magnitude. Other parameters, such as ν, ΓT , and E0

have significantly greater uncertainty. There is also the potential for equivalent

scale errors in assuming a “top-hat” vertical profile for the plume variables when

deriving the initial vertically-integrated model. Thus, the approach described in

this subsection is simply a way to improve the first estimate and should not be

taken to denigrate the horizontally-integrated model in equation (4.5).

4.5 Interaction with Seasonal Forcing

The motivation for developing this horizontally-integrated model was to investigate

whether transverse flow contributes to the channelisation of the plume in coupled

simulations with ice shelves. Fully coupled simulations were run using the numerical

methods described in § 3.1. The linear operator for the plume solver, defined in

equation (3.28), was modified to contain the Coriolis forcing terms, becoming

L[D,U, U ′, S, S ′, T, T ′]T =
[
dD

dx
,
dU

dx
− U ′, dU

′

dx
− ΦαDV
ναDU

V,
dV

dx
− V ′,

dV ′

dx
+ ΦαDU
ναDV

U,
dS

dx
− S ′, dS

′

dx
,
dT

dx
− T ′, dT

′

dx

]T
. (4.24)

Shape coefficients, drainage terms, and the equation for y-momentum were added to

the nonlinear operator. It was found that the existing preconditioner was adequate

to solve the modified equations. The solver was tested first by running it in the trivial

case with Φ = 0 and V = 0 throughout the domain, with uniform thickness in y, to

ensure that it converged to the same results as the model in § 3.1.4.2. It was then

further tested by checking that the values of each variable at the end of the domain

agreed with the asymptotic predictions in § 4.2 when Φ 6= 0 and bx was constant.

Boundary conditions are the same as those used in Chapter 3, with the addition

of V = 0 at x = 0 and V ′ = 0 at x = X, where X is the length of the ice shelf. These

correspond to no transverse flow at the grounding line and no gradient in V at the

outflow boundary. Given that the ice shelf slope is nonuniform, it wasn’t clear what
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Figure 4.11: Steady state results for coupled simulations of the ice shelf and horizontally-
integrated plume. Also plotted is the steady state basal depth for simulation ssNeJeDa
without the Coriolis force (b̂).

choice of shape coefficients should be used, so two sets of simulations were run: one

using coefficients calculated for bx = 0.1 (representative of slopes towards the end of

the ice shelf) and the other using coefficients calculated with bx = 1 (representative

of slopes near the grounding line). Parameter values are the same as those given in

table 3.1 and the same set of parameterisations were used as in simulation ssNeJeDa.

Simulations were first run to steady state with the coupled plume. A continuation

approach was used to obtain a good guess for the initial steady state of the plume, to

aid the iterative solver. Prior to the first time step it was necessary to initially solve

for the plume without Coriolis forcing, then gradually step the Coriolis parameter up

to its appropriate value. During this process, the hydrostatic term in equation (4.5c)

was turned off by artificially setting fD(y1) = fD(y2). The value of fD(y1) was then

gradually reduced to its appropriate level (∼ 0). Once this was done, the ice shelf

could be integrated forward in time. While the plume solver sometimes struggled

to handle rapid increases in Φ, once the correct value was reached it displayed

similar levels of performance as in the irrotational, non-horizontally integrated case.

The results of these simulations can be seen in figure 4.11. For both sets of shape

coefficients the ice is slightly thicker (∼ 70 m) than it was in simulation ssNeJeDa
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Figure 4.12: The difference between the ice thickness (h) at different points in the
oscillatory cycle and the steady state thickness h̄ for an ice shelf forced by variations in
subglacial discharge. The shelf is coupled to a horizontally-integrated plume using shape
factors calculated with bx = 0.1.

without rotation (see § 3.3). This is due to the plume velocity being significantly

lower across most of the domain, resulting in smaller melt rates. The two rotational

simulations are very similar, but V tends to be slightly larger for the bx = 0.1

coefficients case and D slightly smaller. This suggests that the change in shape

coefficients with slope does not have a major impact on the plume behaviour.

Next, a pair of simulations were run with seasonally varying subglacial discharge,

similar to diNeJeDa in § 3.4. While in Chapter 3 the magnitude of the subglacial

discharge variations was 90% of the mean state, it was found that this caused the

solver to fail for the rotational plumes. The exact reason for this is unclear, but

given that it happens suddenly when the discharge is approaching its minimum

value it seems reasonable to assume that it is an issue with the plume becoming

subcritical. To avoid this problem, the variations were instead set to 85% of the

mean state. The results of these simulations are presented in figures 4.12 and 4.13

for the bx = 0.1 and bx = 1.0 coefficients cases, respectively. The ripples in these

results are of similar amplitude to those in simulation diNeJeDa, although the ripple
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Figure 4.13: The difference between the ice thickness (h) at different points in the
oscillatory cycle and the steady state thickness h̄ for an ice shelf forced by variations in
subglacial discharge. The shelf is coupled to a horizontally-integrated plume using shape
factors calculated with bx = 1.

magnitude decays more strongly downstream. This is likely because the ice shelves

are thicker in these simulations, resulting in greater stretching. Global oscillations

are not present downstream, due to the plume flow being in the asymptotic state in

this region and not affected by the subglacial discharge forcing. As a result, melting

only varies from the steady state near the grounding line and can not drive global

oscillations downstream. This lack of downstream melting perturbation also explains

the reduced bias towards thickening in these simulations compared to simulation

diNeJeDa. There are only minor differences between the two horizontally-integrated

simulations, with that using bx = 0.1 coefficients displaying slightly larger ripples

and a greater bias towards thickening.

Finally, simulations were run with the ice shelf forced by seasonally varying flux

across the grounding line, as in simulation ifNeJeDa in § 3.5. However, unlike in

the earlier simulation, in the horizontally-integrated case it proved possible to run

the simulations with δ 6= 0. The choice was made to use a non-zero value of δ as this

is the more physically realistic choice. As in ifNeJeDa, ice flux oscillations at the
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Figure 4.14: The difference between the ice thickness (h) at different points in the
oscillatory cycle and the steady state thickness h̄ for an ice shelf forced by variations in
ice flux across the grounding line. The shelf is coupled to a horizontally-integrated plume
using shape factors calculated with bx = 0.1.

0 1 2 3 4 5 6
x

30

20

10

0

10

20

30

h
−
h̄

[1
0−

3
]

t=0.25τ

t=0.5τ

t=0.75τ

t=1.0τ

Figure 4.15: The difference between the ice thickness (h) at different points in the
oscillatory cycle and the steady state thickness h̄ for an ice shelf forced by variations in
ice flux across the grounding line. The shelf is coupled to a horizontally-integrated plume
using shape factors calculated with bx = 1.
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Figure 4.16: Upper: perturbations to the melt rate and basal depth of the ice shelf
in the horizontally-integrated simulation with shape factors calculated using bx = 0.1.
Data is for the second half of the domain only and is from a quarter of the way through
a seasonal cycle after the ice has reached a statistically-steady state. Lower: these two
quantities plotted against each other, showing little correlation. The colour of a point
indicates its location on the shelf, with white corresponding to x = 3 and navy to x = 6.

grounding line had a magnitude of 50% of the mean value. The results of a simulation

run with coefficients calculated using bx = 0.1 are shown in figure 4.14, while those

for a simulation with coefficients calculated using bx = 1 are in figure 4.15.

The results are very similar to those in simulation ifNeJeDa, especially near

the grounding line where ripples are of similar magnitude. Disagreement between

the two simulations with different shape factors is negligible. There is a slight

bias towards the ice thickening near the calving front which was not present in

the simulation without Coriolis forces. It is hypothesised that this is due to the

nonlinear dependence of asymptotic plume velocity on basal slope, which can be

seen in figure 4.4a. While the forcing causes the shelf to have regions of both

increased and decreased basal slope, the velocity will fall more in the regions of
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Figure 4.17: Upper: the total basal depth of an ice shelf at time t = 0.25τ into a
seasonal cycle. The shelf has been forced with seasonally varying ice flux and is coupled
to a horizontally-integrated plume model, with the plume’s shape parameters calculated
for a basal slope of bx = 1. Lower: The basal slope of the ice shelf at time t = 0.25τ . It is
positive definite throughout the domain, indicating no overdeepenings.

decreased slope than it rises in regions of increased slope. As such, the average

plume velocity is reduced, leading to a lower average melt rate. This is similar

to the mechanism which caused the bias towards thicker ice in the simulations

forced by varying subglacial discharge.

The amplitude of the ripples is slightly smaller towards the calving front in these

simulations than those in § 3.5. This is likely due in part to greater stretching,

as in the discharge-forced case. However, there is no evidence of the perturbation

growth seen in § 3.5. This is due to much less feedback between the plume thickness

perturbation and the melt rate (figure 4.16) compared to simulation ifNeJeDa.

This may be because δ 6= 0 in the horizontally-integrated simulation. The smaller

size of the ripples mean they are not large enough to produce overdeepenings,

as can be seen by inspecting the basal depth of the ice shelf and its gradient in

figure 4.17 (where shape factors were for bx = 1).

It was hypothesised that, by accounting for the transverse velocity component,
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Figure 4.18: The 2-D velocity field (arrows) for the ice flux-forced simulation with shape
factors calculated for bx = 1. Also plotted is the local basal slope of the ice shelf (colours).
It can be seen that channelised flow did not occur along the regions of increased slope.

the horizontally-integrated model would be able to capture the channelisation of

plume flow and thus lead to the development of a basal channel in the coupled

ice shelf. However, examining the 2-D vector field shows that this did not in fact

happen (see figure 4.18). Indeed, in regions with increased slope the plume flow

tends to be more directed in the longitudinal direction than elsewhere. It would

thus appear that transverse ripples do not tend to channelise plume flow, which

limits their ability to grow. Although the horizontally-integrated model did not

lead to the growth of transverse channels as hoped, it remains a potentially useful

tool for efficiently investigating plume flow beneath ice shelves.

4.6 Conclusions on Transverse Flow

In this chapter, the derivation of a horizontally-integrated plume model was

presented which included the effects of the Coriolis force and lateral export in

a simplified 1-D model for evolution of flow along the length of the shelf. This model

includes a number of coefficients representing the transverse shape of the plume
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variables. Some basic insights could be gained when assuming the plume was uniform

in the transverse direction. Solving for the plume with these assumptions showed that

the plume went through a transient downstream evolution near the grounding line

before reaching an asymptotic state. Analytic predictions for the asymptotic values

of each plume variable were derived and found to give good agreement with numerical

results. In order to more realistically represent the transverse shape coefficients, a

transverse initial value problem was formulated to describe the transverse structure

of the plume in the asymptotic region. The 2-D velocity field predicted by this

model agrees well with the qualitative structure and approximate magnitude of

the ice-ocean boundary layer velocity field calculated by Jordan et al. (2018) using

a fully 3-D ocean model. In particular, the rotation of the plume flow into the

across-shelf direction was well represented in the horizontally-integrated model, as

was the largely longitudinal direction of flow near the side-wall of the cavity.

The horizontally-integrated plume model was also coupled to a co-evolving ice

shelf in order to run simulations similar to those in Chapter 3 to investigate the

impact of seasonally varying forcing on the ice shelf. The ripples in ice thickness

produced in simulations with the coupled horizontally-integrated model forced by

time-varying subglacial discharge or ice flux were smaller than those seen in the

results of Chapter 3. The ripples caused by varying ice flux were not able to grow

into overdeepenings in the horizontally-integrated case. The ripples in the ice

flux-forced simulations in § 3.5 exhibited growth towards the end of the ice shelf,

due to a feedback between thickness perturbation and melt rate. This feedback was

not observed when using the horizontally-integrated plume model and the Coriolis

force appears to disrupt channelisation of the plume flow along the ripples. This

result suggests that seasonal variability may not be a viable mechanism to explain

the formation of large transverse basal channels on ice shelves with significant

overdeepenings, at least for ice shelves with low melt rates.

The horizontally-integrated model has the potential to be applied far beyond

studying channel formation in ice shelves. For example, it offers a computation-
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ally cheap way to parameterise ice melt, which may be useful in larger-scale

climate models.

The version of the horizontally-integrated model presented here makes use of

many of the same simplifications used in Chapter 3. Only a one-equation formulation

of ice melt was used and the melting temperature was taken to be independent of

pressure (i.e., depth). It would be fairly straightforwards to horizontally-integrate

the three equation treatment of melt and incorporate it into the model in future.

The thermal transfer coefficient, Γ∗T , used in this thesis was much smaller than the

commonly accepted value and produced unrealistically low melt rates compared

to observations under Pine Island Ice Shelf. While higher melt rates present

numerical difficulties for the plume solver used here, in future work it may be

worth trying alternative approaches to overcome this problem in order to run

simulations which can better evaluate the potential for channel formation under

PIIS. Another assumption made by the plume model used here is that the ambient

layer beneath the plume has large (effectively infinite) depth. Near the grounding

line this approximation would not hold well and a two-layer approximation may be

needed to characterise the return flow and satisfy conservation of vorticity.

There are numerous other opportunities to further develop the horizontally-

integrated plume model. For example, it may be generalised to account for transverse

ice-shelf slope, perhaps by coupling it to a similarly horizontally-integrated ice model.

It may also be possible to apply the plume model to a cavity with variable width

(i.e., nonuniform ∆y), allowing its use with less idealised geometries. Another

avenue for future development would be to try to explicitly capture boundary

currents, such as seen in figure 4.9a, in the model. This could be done by coupling

together two horizontally-integrated plume models, with the outflow through the

upper y-boundary of one providing inflow through the lower y-boundary of the

other. The first of these plumes would have an impermeable lower y-boundary,

as described in this chapter, while the second would have an impermeable upper

y-boundary along which the boundary current would form.
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While using ground penetrating radar to measure glacier thickness, it has been

observed that faint internal reflectors also exist within the ice (e.g. Gudmandsen,

1975; Jacobel and Hodge, 1995). An example of such internal reflectors in the

Fimbul Ice Shelf can be found in figure 5.1. These are caused by changes in the

dielectric constant of ice, which can result from differences in density (Robin et al.,

1969; Harrison, 1973), orientation of ice crystals (Harrison, 1973), or the presence of

impurities (Harrison, 1973; Hammer, 1980). It is widely thought that such changes

in ice properties occur when the ice first accumulated at the surface of the glacier.

Therefore, internal reflectors are often interpreted as isochrones, or surfaces on

which the ice is of the same age (Robin et al., 1969).

These isochrones encode information about the past evolution of the ice sheet

(Leysinger Vieli et al., 2007). As such, there has been interest in using them as a

175
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Figure 5.1: Radar transect of the Fimbul Ice Shelf, showing internal reflectors. One
particular reflector is marked by the yellow line. The upper panel was produced with
high frequency radar, while the lower was produced with low frequency radar. (Image
source: Langley et al., 2014)

way to measure current and historical ice sheet properties. A variety of types of

data can be extracted from englacial layers. For example, Ng and Conway (2004)

used englacial layer data to estimate the velocity of Kamb Ice Stream prior to

its stagnation ∼ 150 years ago and Siegert, Ross, et al. (2013) have discerned

isochronal evidence of past slowdown or glacial advance in the Weddell Sea sector

of Antarctica. Internal radar reflectors have also been used to estimate basal melt

rates over subglacial lakes (Siegert, Hindmarsh, et al., 2004) or due to possible

historical grounding line motion (Catania et al., 2006).

In addition to observational papers such as these, more theoretically inclined work

exists which tried to mathematically model internal layer evolution. Using a simple

model, Vaughan David G. et al. (1999) devised a criterion with which to classify

whether ripples in internal layers formed due to changes in accumulation or vertical

strain rate. Authors such as Nereson et al. (2000) and Karlsson et al. (2014) have used

2-D ice flow models in x and z to constrain past and present accumulation patterns

with internal layer data. Parrenin, Hindmarsh, and Rémy (2006) and Parrenin

and Hindmarsh (2007) were able to derive analytic solutions for layer geometry

in a grounded ice sheet by making a number of different simplifying assumptions

(e.g., steady state, spatially uniform velocity profiles in z). This allowed easy

exploration of the dependence of the layer geometry on factors such as accumulation,

basal topography, and the velocity shape function. The analyses described above
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have largely taken the form of comparing observations with simulations run for

a few representative accumulation or ice flow configurations. A formal inverse

method was developed by Waddington et al. (2007) for a steady-state flowband

in an ice sheet, allowing the spatially-varying accumulation rate to be determined.

Most modelling of isochrone evolution has featured only one horizontal dimension,

although (Hindmarsh et al., 2009) presented a horizontally 2-D numerical model.

Almost all internal layer models discretise the vertical coordinate (with the exception

of Waddington et al., 2007), whereas most ice sheet models are vertically integrated.

The work discussed above, and almost all work to date, has focused on internal

layers within grounded ice sheets rather, than ice shelves.

5.1 Modelling Reflectors

Here a model is developed to characterise the evolution of internal layers within a

shallow-ice shelf, to give insights into whether such layers provide useful information

on ice flow. Consider a scalar field k(x, y, z, t) indicating the age of the ice. As

the ice accumulates on much longer time-scales than those of ice shelf flow, the

field is treated as an inert Lagrangian tracer:

∂k

∂t
+ ~u(x, y, z) · ∇k = 0. (5.1)

To be useful, this must be converted into a form compatible with the vertically

integrated equations in § 1.4.1. However, it is the vertical structure which is of

interest and this would normally be lost when integrating over depth. To avoid

this, we express k as a Taylor series in z with r terms:

k =
r∑

n=0
κn(s− z)n,

where s(x, y, t) is the surface elevation and κn(x, y, t) are coefficients to be deter-

mined.
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This is substituted into equation (5.1) and expanded. Integrating the incom-

pressibility equation and using the result to eliminate w(z) yields

r∑
n=1

nκn(s− z)n−1
(
∂s

∂t
+ ~u · ∇hs− w(s)

)
+

r∑
n=0

(
∂κn
∂t

+ ~u · ∇hκn

)
(s− z)n

−
∫ s

z
∇h · ~udz′

r∑
n=1

nκn(s− z)n−1 = 0,

where ∇h is the horizontal gradient operator. The boundary conditions specify that

∂s/∂t+~u·∇hs−w(s) is equal to the rate of accumulation of ice at the surface, which is

assumed to be zero. This is a typical assumption for ice shelves, where basal melting

is much greater than surface accumulation. If accumulation were not zero then one

would retain a weak coupling of κn to the higher order coefficient κn+1, proportional

to the surface accumulation. This would tend to cause κ0 to become slightly positive

or negative, depending on the sign of the surface mass balance. Once again, plug

flow is assumed, with horizontal components of ~u independent of z, yielding

r∑
n=0

(
∂κn
∂t

+ ~u · ∇hκn − nκn∇h · ~u
)

(s− z)n = 0.

Note that the binomials (s− z)n are linearly independent for different values of n.

Thus
∂κn
∂t

+ ~u · ∇hκn = nκn∇h · ~u. (5.2)

The evolution of an arbitrary number of these coefficients κn(x, y, t) can be tracked,

with the number and values chosen to give a plausible initial configuration.

One concern with this approach is the effect of truncating the Taylor series

describing the vertical structure. In effect, this truncation sets the coefficients of

the higher modes in the series to zero, which represents a steady state solution to

equation (5.2). However, the physical values of these modes would not be zero and

would continue to evolve as the ice advects. It must be considered whether they could

grow to the point where it is no longer reasonable to neglect them. To evaluate this,

consider a perturbation of the form εei(ct−k1x−k2y) to the κn = 0 steady state (where
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ε is some small real coefficient, c is a complex wave speed, and k1 and k2 are real

wave-numbers). Substituting this ansatz into equation (5.2) and simplifying yields

c =
(
k1
k2

)
· ~u− i (n∇ · ~u) .

The solution is stable for Im(c) < 0, meaning

∇ · ~u > 0 ⇒ stability.

This condition is always satisfied on ice shelves, so this approach to modelling

internal layers can be useful in that setting. However, if it is to be applied to a

grounded ice sheet then care must be taken to ensure the divergence condition is met.

5.1.1 Steady State

As a proof of concept, consider a 1-D ice shelf in steady state. Equation (5.2) becomes

u
dκn
dx

= nκn
du

dx
,

which, if boundary conditions are specified at x = 0, has the solution

κn = κn(0)
(

u

u(0)

)n
. (5.3)

An analytic solution was found using the steady-state ice shelf described in equa-

tion (2.21) and boundary values κn(0) set to the first 10 Taylor coefficients for

k(z) = (1.05− z)−1/2 − 1.05−1/2, (5.4)

which is chosen for illustrative purposes to give a plausible monotonic increasing

age profile. These boundary values will be used for all subsequent calculations

in this chapter. The age field, k, was computed from the coefficients and plotted

in figure 5.2. It can be seen that the oldest ice at the bottom of the shelf is

melted away across the shelf’s length. Stretching causes the shelf to thin and

deep isochrones to be lifted upwards along shelf by the corresponding strain as

the shelf adjusts to a new hydrostatic equilibrium.
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Figure 5.2: The steady state synthetic age, k, of the ice in an ice shelf like that described
in equation (2.21). The age is in arbitrary units and the lines between different colours
represent isochrones. The age profile at the boundary is given by equation (5.4) with
r = 10 coefficients used.

5.1.2 Linear Response

A simple way to examine how seasonal variability alters the internal reflectors within

the ice shelf is to perform a linear analysis like that done in Chapter 2. If the steady

state results are κ̄n, we assume the time varying form of κn is κ̄n(x) + κ̃n(x)eiωt,

where ω is the angular frequency of seasonal forcing. Equation (5.2) was then

linearised about the steady state to yield

iωκ̃n + ũ
dκ̄n
dx

+ ū
dκ̃n
dx

= nκ̃n
dū

dx
+ nκ̄n

dũ

dx
. (5.5)

Using the values for ũ obtained in § 2.3 and taking κ̃n(0) = 0, this equation was

solved numerically to get the linear response of the internal reflectors to seasonal

variations in subglacial discharge. A Chebyshev pseudo-spectral method (Trefethen,

2000) was applied to do this using the differentiation matrices in § 3.1.1 to form

and solve a linear system for κ̃n(xj) at the Chebyshev collocation points. The

resulting differences between the steady-state values of k and their perturbed values

at t = 0 are shown in figure 5.3.
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Figure 5.3: Differences (k̃) between the age field of an ice shelf at t = 0 when being
linearly perturbed by 90% seasonal variation in subglacial discharge, compared to the
age field when the shelf is in steady state. The same parameter choices are used in this
calculation as in the linear analysis of subglacial discharge forcing found in § 2.3.

The perturbation analysis shows that there would be only very small changes

made to the position of the isochrones, with a maximum vertical offset of ∼ 0.2 m

near the base of the ice at the grounding line (less elsewhere) and a horizontal

wavelength of ∼ 1.3 km. These would not be noticeable by visual examination and

would likely be too small to be detectable by radar. This is unsurprising, as the

linear analysis has previously shown that changes to the structure and velocity of

the ice shelf would also be too small to notice (§ 2.3). Note, however, that the

perturbations to the isochrones are an order of magnitude smaller than those to

the ice shelf thickness. This could suggest that the isochrones respond less strongly

than the ice shelf as a whole. Equation (5.2) shows that evolution of the age field is

controlled by ∇h · ~u. Subglacial discharge variations thin the ice by melt-induced

mass loss and only weakly affect velocity through changes to the ice geometry.

Where the isochrones do respond most strongly is near the base of the ice shelf

and near the grounding line. This is due to the steady-state isochrones being most

tightly spaced at this location and the response to variations in melting being
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strongest here. For radar to penetrate deep enough to detect internal reflectors at

the grounding line would require the use of low frequencies and thus low resolution,

making any perturbations difficult to detect.

A similar analysis can be performed using the values of ũ resulting from seasonal

variations in the ice flux crossing the grounding line, as calculated in § 2.4. The

differences in the age field (figure 5.4) are much larger in this case and are of the

same order of magnitude as the perturbations to the ice thickness. This would offset

an isochrone depth by up to up to ∼ 10 m (with a wavelength of ∼ 1.3 km, as before),

which is significant enough to visibly offset the total age field k = k̄ + k̃, as can be

seen in figure 5.5. These differences may be detectable in radar data. The only ice

property by which the age field is effected is the velocity. This is only minimally

altered by variations in subglacial discharge, so this had little effect on the age field.

However, ice flux forcing takes the form of substantial changes to the ice velocity,

resulting in much greater alterations to the age field. Observations of basal ripples

would provide insufficient information to distinguish whether they were formed by

forcing to the melt rate or to the ice flux. However, the presence or absence of

ripples in internal layering data could allow the mechanism to be determined.

5.2 Response in Nonlinear Simulations

Because equation (5.2) is uncoupled from the others describing ice shelf evolution,

it can easily be incorporated into the nonlinear solver used to run the simulations in

Chapter 3. After the ice shelf has been integrated in each time-step, equation (5.2)

can be solved using the updated value of u. As the equation is linear, implicit

integration (which enhances numerical stability) is inexpensive and can be performed

by solving the linear system(
1−∆tndu

m+1

dx
+ ∆tum+1 d

dx

)
κm+1
n = κmn , (5.6)

where superscripts are indices for the time-step. Arbitrary initial conditions can be

specified for κ0
n and Dirichlet boundary conditions set the value of κn at x = 0. The

modified version of the NITSOL GMRES routine discussed in § 3.1.3, preconditioned
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Figure 5.4: Differences (k̃) between the age field of an ice shelf at t = 0 when being
linearly perturbed by 50% seasonal variation in ice flux across the grounding line, compared
to the age field when the shelf is in steady state. The same parameter choices are used in
this calculation as in the linear analysis of ice flux forcing found in § 2.4.
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Figure 5.5: The total age field of an ice shelf at t = 0 when being linearly perturbed by
50% seasonal variation in ice flux across the grounding line. The same parameter choices
are used in this calculation as in the linear analysis of ice flux forcing found in § 2.4.
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by solving the tridiagonal matrix representing the finite-difference version of the

linear operator in equation (5.6), was used to solve for κm+1
n . The form of the

preconditioner matrix is similar to that in equation (3.21). The solver was tested

to ensure the internal layers evolve to the predicted steady state. These simulations

did not take significantly longer to run than those without the age field information.

However, if run for long periods, noise eventually accumulated in the internal

layer data, making it meaningless. The reason for this is unclear and should

be investigated in future. In the meantime, useful results can still be obtained

before the noise becomes significant.

The steady-state age field is known from equation (5.3), making it unnecessary

to re-run a simulation to steady state. Instead, the final output of simulation

ssNeJeDad0 was modified to include the expected layer information. This was then

used to initialise a new version of simulation ifNeJeDa which computed the effects

on the internal reflectors of seasonal forcing of the ice flux crossing the grounding line,

with results at time t = 2.91 displayed in figure 5.6. It was confirmed that even at

this early point in the simulation a statistically steady state had been approximately

obtained. The results are similar to those from the linear perturbation analysis in

figure 5.5, with ripples in the internal reflectors similar to those in the base of the

ice shelf. These are most prominent towards the base of the ice. Near the calving

front it can also be seen that an overdeepening has melted through an internal

reflector, which remains upstream of the overdeepening.

It was also considered of interest to examine how the age field responds to a

sudden change in the grounding line ice flux, as this might produce features which

could be seen in radargrams. The modified output of simulation ifNeJeDa was

used it initialise a new simulation which was identical except that the boundary

condition for u at the grounding line was now twice its previous value. The age

field at various times during the ice evolution is illustrated in figure 5.7. This shows

a sudden discontinuity in the slope of the internal layers (and the base of the shelf)

at the ice which was located at the grounding line when the speedup occurred.

The discontinuity was the result of faster-flowing ice spending less time exposed to
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Figure 5.6: The age field (k) of an ice shelf forced by seasonally varying ice flux across
the grounding line, shown at the beginning of a seasonal cycle at t = 2.91. This was
computed by re-running the nonlinear simulation ifNeJeDa from Chapter 3 to include
the evolution of κn for n = 1, . . . , 10.

thinning. The discontinuity was advected along the length of the shelf, eventually

leaving the domain and allowing the ice to reach a new steady state. The sharpest

discontinuity is near the base of the ice shelf and quickly melts out. This, combined

with damping due to stretching of isochrones, weakens the signal downstream.

5.3 Potential Use in Inverse Modelling

As well as providing qualitative insight as discussed above, this formulation may

also have use for inverse modelling. A simple way to do this would be to use

isochrone information, coupled with the assumption of steady state, to calculate the

velocity field of an ice shelf from equation (5.3). By comparing this result to that

calculated from ice thickness data using equations (1.7b) and (1.7c), conclusions

can be drawn about how close the glacier is to steady state.

Information on even one of the modes of the Taylor expansion would be sufficient

to calculate the 1-D steady-state velocity. Consider the n = 1 mode. In steady state
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Figure 5.7: The age field (k) at various times during the evolution of an ice shelf
experiencing a sudden doubling of the ice flux crossing the grounding line.

this describes deformation due to horizontal stretching and the resulting vertical

contraction of a slab of ice. This information, combined with knowledge of ice

thickness, is sufficient to allow the mass balance of an ice shelf to be calculated,

revealing the melt rate.

While ice velocity can be calculated from equations (1.7b) and (1.7c) using the

ice thickness, doing so requires knowledge of boundary conditions, which often must

be assumed. However, the only boundary conditions needed to solve equation (5.2)

in steady state can be directly measured from the internal layers observed in radar

data. Thus, the velocity field can be calculated without assumptions about boundary

conditions; indeed, the actual velocity boundary conditions may be determined

in this way. Such an approach could yield independent estimates of ice velocity

to compare against other methods based on surface feature tracking (e.g. Rignot
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and Steffen, 2008, and references therein).

Such inverse calculations become much more complex if the assumption of steady

state is dropped. However, doing so may allow some information to be gleaned

on the history of the ice flow. A simple example of this is that sudden changes

in the slope of internal layers, such as seen in figure 5.7, would indicate surges

in past ice flow. At present, quantitatively rigorous techniques of this sort have

not been developed. The linear response theory in equation (5.5) might provide a

useful tool for employing in such inverse calculations. Developing such methods

may not be trivial but could provide a wealth of information on ice dynamics, much

of which would be of interest to paleo-glaciologists.

5.4 Conclusions on Modelling Internal Reflectors

This chapter develops a method to model the evolution of internal reflectors,

represented by a Lagrangian tracer, within a vertically integrated ice shelf model.

This could be applied to both linear and nonlinear analysis of ice shelves. It was

found that variations in the ice shelf melting rate have only a very weak effect

on the structure of internal layers, as the melt does not strongly affect the ice

velocity field which drives the evolution of the layers. However, variations in ice flux

crossing the grounding line (i.e., ice velocity) drive the formation of ripples within

the internal layers similar to those which form on the base of the ice. Examining a

combination of internal reflector and ice thickness data may therefore allow ripples

formed by varying melting to be distinguished from those formed by varying ice

flux. A nonlinear simulation run for ice undergoing a sudden increase in grounding

line velocity showed that this would form a discontinuity in the slope of internal

reflectors. The presence of such features in observations may provide a record of

past changes to ice shelf velocity. In addition to use of this treatment of internal

layers in forward modelling, it is hoped that inverse methods may be derived which

would allow ice velocity to be calculated from internal layer data. This presents

and interesting opportunity for future work.
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6.1 Summary of Results

To date, relatively little has been known about the response of ice shelves to

temporal variability in their environment. The previous chapters have presented

the first systematic investigation of how oscillations in subglacial discharge and

ice flux crossing the grounding line alter ice shelf structure and its coupling to the

underlying plume. In particular, they represent an attempt to determine whether

such forcing could give rise to the transverse basal channels observed under Pine

Island Ice Shelf by Bindschadler, Vaughan, et al. (2011).

The 1-D linear analysis performed in Chapter 2 showed that seasonal variability

in both subglacial discharge (of amplitude 100%) and ice flux (of amplitude 50%)

could alter the thickness of an ice shelf and provided understanding of the physical

mechanisms responsible for such changes. Such forcing caused the formation of

ripples in the ice of size ∼ 1 m and ∼ 10 m, respectively, on a Petermann-like ice
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shelf 30 km long, 600 m thick at the grounding line, and with melt rates of 18 m yr−1.

Variations in subglacial discharge caused the melt rate to oscillate across the length

of the ice shelf. Ice which entered the domain when the melt was low thus tended

to be thicker than that which entered when the melt rate was high, leading to the

superposition of ripple-like perturbations on the background ice thickness gradient.

The varying melt rate caused global oscillations to the ice thickness on a seasonal

basis as well. Varying ice flux also caused ripples to form because high-flux (i.e.,

fast moving) ice spent less time exposed to thinning by stretching and melting and

thus was thicker than low-flux (slow moving) ice. Global thickness oscillations were

present in this case too, but were not very large except near the grounding line.

Increasing the melt rate led to larger ripples in both cases, while increasing the

rate of stretching led to larger amplitude ripples in the ice flux case but not the

subglacial discharge case. The ripple amplitude was inversely proportional to the

frequency of the forcing in both cases, as a longer period provided more time for

perturbations to accumulate. The wavelength of the ripples was also found to be

inversely proportional to the frequency, related by the background ice velocity. In

both cases, the ripples were too small to cause channels such as those seen under

PIIS and could only change the level of the upwards ice-slope rather than create

overdeepenings. However, the ice-flux derived ripples had some resemblance to the

basal terraces observed by (Dutrieux, Stewart, et al., 2014), albeit with a much

larger wavelength for annual forcing. It may be that shorter period forcing coupled

with higher melt rates would be able to explain the formation of basal terraces.

This analysis could not rule out the possibility that a nonlinear process which was

not captured would cause the ripples to grow into channels.

To address this, a nonlinear solver for the 1-D coupled ice shelf and plume

equations was developed and tested, as described in Chapter 3. This was applied

to an ice shelf 1200 m thick at the grounding line, with a domain length of 80 km,

and a melt rate of ∼ 10 m yr−1. This roughly corresponds to an ice shelf with

Pine Island-like geometry but a cold cavity. Interestingly, depending on the initial

conditions of the ice shelf, evolution to steady state could give rise to a shock-like
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feature in the plume. Unfortunately, analysis of subsequent development after

shock formation was not possible as the shock caused convergence issues in the

nonlinear solver. Simulations forced by variations in subglacial discharge behaved

in much the same way as predicted by the linear analysis, producing ripples of

similar amplitude. The main difference was that there was a bias towards the ice

shelf becoming thicker. This was due to nonlinearities in the relationship between

subglacial discharge and the resulting plume velocity. This meant reductions to

discharge reduced the melt rate more than increases to discharge amplified it.

The ice flux simulations also produced similar amplitude ripples as their linear

counterparts. However, a feedback between the thickness perturbation and the melt

rate caused the ripples to begin growing into overdeepenings towards the end of the

domain. This represents an instability mechanism potentially capable of growing

channels, although it may be an artefact of neglecting hydrostatic forces on the

plume (which was necessary for numerical convergence). A simplified dynamical

relationship was derived to explain the impact of varying ice flux on ice thickness

perturbations: equation (3.44) for Newtonian viscosity, or equation (3.47) for Glen’s

Law rheology. These equations show that varying ice flux changes the time over

which a parcel is subjected to background stretching and melting, which drives

ripple growth, whilst the impact of perturbations on modifying the stretching

drives perturbation decay and nonlinear rectification. Even without the feedback

and overdeepening, the ripples remain reminiscent to basal terraces. The above

results proved relatively insensitive to choices of ice viscosity and plume entrainment

parameterisation. There was a small increase to the ice thickness when using Glen’s

Law ice rheology due to reductions in stretching.

The 1-D simulations described above were incapable of capturing the inherently

2-D channelisation feedback believed to be responsible for the growth of longitudinal

basal channels. For this reason, a “horizontally-integrated” plume model was

developed in Chapter 4, which sought to include the Coriolis force and transverse

velocity component in a set of 1-D plume equations. By averaging 2-D plume

equations across a lateral cross-section, a model was derived for along-slope variations
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of a meltwater plume including lateral flow driven by Coriolis forces and lateral

export into an assumed boundary current. This model was found to depend on

assumptions about the transverse shape of the plume variables which control O(1)

shape factors, as often occurs in plume models (Manins and Sawford, 1979, e.g.).

Initially the transverse shape was assumed to be nearly uniform and turbulent

diffusion was set to zero. Integrating the resulting initial value problem revealed

the plume to undergo transient evolution in a narrow region near the grounding

line, before reaching an asymptotic state with the plume flowing in a predominantly

across-shelf direction. Simple analytic solutions were determined for the asymptotic

state, which were independent of x for a planar slope. They also gave good agreement

when applied to an ice shelf with slowly varying slope.

Such solutions revealed a dependence on the width over which the horizontal

integration was performed, suggesting non-uniform variations in the transverse

direction. Hence, the model was refined, with the transverse shape determined in

the asymptotic regime by solving a new initial value problem in y. These results

were used to set shape parameters in the horizontally-integrated equations, yielding

surprisingly good agreement with the flow structure when comparing with the

results of a fully 3-D ocean model, given the simplicity of the theory. Running a

coupled simulation with a co-evolving ice shelf and horizontally-integrated plume

showed a similar response to seasonal forcing as seen in Chapter 3. However, no

overdeepenings developed in the ice flux simulation, with the ripples failing to

channelise flow in the across-shelf direction but instead directing it to be more

strongly in the longitudinal direction. This mutes the feedback between ripple

geometry and melt seen for 1-D plume flow.

The results of these chapters suggest that seasonal variations in subglacial

discharge are not able to cause large changes in ice geometry, acting on their own.

However, the simulations were run in a relatively low-melt regime and changes

might be more significant in a high-melt case. Variations in ice flux produce more

noticeable changes to the ice thickness than variations in subglacial discharge. It

appears unlikely that these mechanisms on their own could give rise to transverse
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channels of the sort observed by Bindschadler, Vaughan, et al. (2011), as they

are unable to channelise the plume flow. However, they may be involved in the

formation of basal terraces like those observed by Dutrieux, Stewart, et al. (2014).

It is also possible that small amplitude ice thickness variations may perturb the

stress state, leading to crevasse formation (as proposed by Vaughan et al., 2012).

Whilst the ripples have small amplitude, they may be the first points to fail if

the ice approaches the threshold for failure.

Finally, Chapter 5 presented a new approach to capturing the evolution of

internal reflectors/isochrones in a vertically integrated glacier model. An evolution

equation was derived for a Taylor series expansion of the ice pseudo-age in z, suitable

for application with vertically integrated ice flow models. Proof-of-concept results

were given for a 1-D steady state, periodic time-dependent linear perturbations

(both from Chapter 2), and nonlinear simulations (from Chapter 3). These showed

that variations in subglacial discharge would have only very small effects on the

internal reflectors, as they do not directly alter the ice velocity. However, changes

to the ice flux could produce detectable perturbations. This suggests that the

origin of ripples on the base of an ice shelf can be determined by whether similar

ripples are present in the internal reflectors.

6.2 Avenues for Future Research

The modelling work presented in this thesis could interestingly be extended to

account for additional effects not considered here. Though it appears unlikely that

these seasonal variations could cause channelisation, it has not been ruled out that

this could occur in a regime with stronger melting. Numerical instabilities prevented

such a simulation from being run, but it could be worth pursuing in future via a

modified numerical approach. It might also be interesting to explore interactions

between varying subglacial discharge and ice flux, to see if these forcings would tend

to cancel each other out, as speculated in § 3.6. For completeness, the effects of the

three equation melt parameterisation and a halocline and/or thermocline in the

ambient ocean conditions could be explored. The latter is particularly interesting, as
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it would alter the steady-state shape of the ice shelf. It would also be possible to use

the present nonlinear code to consider oscillating thermocline depth, which Holland

(2017) noted caused significant changes to ice shelf melt rate even when occurring

over a short period (e.g., with seasonal frequency). The simulations in which ice

flux varied did not account for movement of the grounding line, which would alter

ice evolution by changing where melting and stretching can begin to occur. As

such, it would be interesting to run a simulation which includes grounding line

motion. This can be done by coupling a grounded ice sheet and floating ice shelf

model, with the domain of each stretching as necessary to reach the instantaneous

grounding line location, as described by Schoof (2007).

If seasonal variability does not give rise to the transverse channels observed by

(Bindschadler, Vaughan, et al., 2011), (Sergienko, 2013) suggested a spontaneous

process due to transverse ice slope arising from stress at the side-walls of the

ice shelf, which remains a possibility. It is also possible that the channels form

from periodically spaced crevasses in the ice shelf base. Periodic crevasse spacing

corresponding to time-scales other than one year has been observed by (McGrath,

Steffen, Scambos, et al., 2012) and (Luckman et al., 2012). If the PIIS channels do

form from crevasses then the annual spacing would just be a coincidence.

A plume was observed to undergo a possible hydraulic jump in Chapter 3.

This could be interesting to explore in more detail on a macro scale (e.g. with a

shock-capturing numerical scheme) and on the micro scale to determine if such

jumps enhance mixing under the ice. It would not be necessary simulate a plume

across the entire length of the ice shelf for this purpose; a small region featuring

a discontinuity in the ice slope would be sufficient.

The horizontally-integrated plume model presented in Chapter 4 offers ample

opportunity for further development. One immediately apparent step would be to

solve for a plume in which the transverse shape is allowed to vary in x. This could

be done by calculating the shape factors at each location using the local basal slope.

However, this relies on the assumption that the plume is in an asymptotic state in

order to calculate the shape coefficients. As such, it would be useful to consider the
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fundamental fluid mechanics at play throughout the plume in the hopes of deriving

parameterisations for the shape coefficients which would hold in the transient regime

as well (e.g., expressing them as functions of dimensionless numbers).

Even without these improvements, the horizontally integrated model was found

to agree remarkably well with an existing 3-D ocean simulation of an ice shelf cavity.

The conditions of that simulation (e.g., transverse variations in the ice shelf slope)

could not be reproduced exactly in the horizontally-integrated model, so it would

be worthwhile to explicitly consider the effect of transverse variability to provide a

better comparison. It may be possible to reformulate the horizontally-integrated

model so that it can account for ice shelf slope in the transverse direction. Given

that the plume model is able to calculate melt rates that are nonuniform across

the width of the ice shelf it could be useful to develop a horizontally-integrated

ice shelf model which can respond with the thickness becoming nonuniform in

the transverse direction as well.

There has recently been interest in developing simple parameterisations with

which to calculate the melt rate under ice shelves in continental-scale ice models for

Antarctica (e.g. Lazeroms et al., 2018). It may be possible to adapt the horizontally-

integrated model for this purpose by formulating it with non-uniform cavity widths

so it can handle non-idealised geometries. As the horizontally-integrated model

assumes outflow at the upper y-boundary, it is unable to capture the boundary

current which typically forms within ice shelf cavities. One way to address this could

be to split the cavity into two coupled horizontally-integrated plumes which would

be solved simultaneously. One of these would be equivalent to the existing model.

However, the other would have an impermeable upper y-boundary and a lower

inflow y-boundary set to receive the transverse outflow values of the first plume.

As speculated upon in § 5.3, the vertically-integrated model developed for the

evolution of internal reflectors may have uses for data assimilation and inverse

modelling. Initially it might provide an additional data source against which to

compare estimates of instantaneous ice velocity based on thickness and direct

measurements from the surface. Formulating such an inverse model would be
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trivial for the 1-D case using equation (5.3) and should not be overly difficult for

the 2-D case. While significantly more challenging, it may also be possible to

use the time-dependent form of the model to deduce past motion of ice from an

instantaneous present day measurement of the internal reflectors.
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In order to run the nonlinear simulations described in Chapters 3 and 4, a

new piece of software was written and released under the GNU General Public

License, version 3. This software, called ISOFT (Ice Shelf/Ocean Fluid and

Thermodynamics), attempts to provide an object oriented, extensible framework

with which to model glacial flow using modern Fortran (MacMackin, 2018a). Though

developed for ice shelves, it could in principle be modified to simulated grounded

ice dynamics as well.

This appendix provides an overview of the structure of ISOFT and an explanation

of the design choices made, in the hope that it might be useful in others’ work.

It is limited to a discussion of code architecture, with numerical methods already

having been described in § 3.1. A number of design patterns were consciously
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used when developing ISOFT. Design patterns, popularised for use in software

development by Gamma et al. (1994), attempt to provide a standard approach to

solving commonly-arising types of problems. The names of these are indicated in the

text by small-caps. An understanding of object oriented programming techniques

in general and object oriented features in Fortran, in particular, will be useful

when reading these notes; see, for example, Rouson et al. (2014). Familiarity with

Universal Modelling Language (UML) diagrams will also be helpful (e.g. Rouson

et al., 2014, Appendix B). Note that, in the UML diagrams in this appendix, names

of derived types are shown in camel case, as is the convention for class names in

most object oriented languages. However, as Fortran is case-insensitive, the decision

was made to use underscore separation within the code.

In essence, the purpose of ISOFT is to integrate equation (3.1) forward in time

to simulate the evolution of an ice shelf. To do this, the basal melt rate must

be calculated by solving plume equations (3.6) or (4.5). ISOFT could easily be

modified to make the plume equations time-evolving, although running such a model

would require a very short time-step and thus be computationally expensive. As

much as practical, ISOFT was kept agnostic as to whether it was handling a 1-D or

a 2-D representation of an ice shelf/plume. However, the current implementation

does explicitly assume a 1-D system in a number of instances and would thus

need to be modified to handle 2-D problems.

The 1-D simulations were sufficiently fast that they could be run in serial.

Multithreading could easily be implemented in many parts of the code where

arithmetic is performed on arrays. Indeed, most of these cases are simple enough

that a compiler may be able to parallelise them automatically. More sophisticated

approaches involving message passing would likely be necessary to make 2-D

simulations practical, but this would be far more difficult to implement and would

likely require substantial refactoring of the code. In particular, the nonlinear solvers

discussed in § A.3 would likely need to be replaced.
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Figure A.1: A UML class diagram illustrating the relationships between the key derived
types used in ISOFT. Components and methods of the types are not shown for reasons
of space. A “C” next to a type name indicates that it is a concrete implementation of a
class, while an “A” indicates an abstract class.

A.1 Representing the a Couple Ice Shelf/Plume

ISOFT uses a large number of derived types (equivalent to classes in other object

oriented languages) in order to model the full glacial system (see figure A.1).

The system as a whole is contained within a cryosphere type, with methods for

saving/loading data to/from the disk as HDF5 files and for integrating forward in

time. The cryosphere (figure A.2a) contains objects of abstract classes basal_

surface (figure A.2b) and glacier (figure A.2c), the latter representing a glacier
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Cryosphere

ice: Glacier
subice: BasalSurface
current_time: real

integrate(time: real)
write_data(outfile: character[*])

(a)

BasalSurface

basal_melt(): ScalarField
basal_drag(): ScalarField
state_vector(): real[:]
update(state_vector: real[:])
solve(ice_thickness: ScalarField, time: real)

(b)

Glacier

ice_thickness(): ScalarField
state_vector(): real[:]
update(state_vector: real[:])
residual(old_state: Glacier, melt, drag: ScalarField): real[:]
precondition(old_state: Glacier, melt, drag: ScalarField, delta_state: real[:]): real[:]
set_time(time: real)
integrate(old_state: Glacier, melt, drag: ScalarField, time: real)
integrate_layers(old_state:Glacier, time:real)

(c)

Figure A.2: UML class diagrams for the cryosphere (a), basal surface (b), and glacier
(c) derived types, providing a simplified description of the methods associated with each.
Red squares indicate private components while green circles indicate public ones which
may be accessed in modules other than the one defining the class. Open symbols indicate
data components while filled ones indicate methods.

and the former representing whatever is underneath it. Objects of these types

have their own methods for reading and writing data, integration, and accessing

useful information. Both are general enough to allow ISOFT to model either

floating or grounded ice.

The only concrete existing implementation of the glacier class is the ice_

shelf type. As its name suggests, this models the behaviour of an ice shelf. While

the implementation of the continuity equation is agnostic towards whether the

model is 1-D or 2-D, at present the ice momentum equation is explicitly 1-D. Ideally

this will be fixed in the future. The ice_shelf type may optionally feature a

Lagrangian tracer, assumed to indicate the age of the ice as would be measured

from internal reflectors (as described in Chapter 5). There is stub for a grounded

ice_sheet type, but its methods have not been implemented.

A few implementations of the basal_surface class are available. The most

commonly used of these is the plume type, modelling the 1-D subglacial plume used
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for simulations in Chapter 3. In principle this can model a second velocity component,

but such a model is physically unstable. There is also the static_plume type, which

does not evolve from the state with which it is initialised or has loaded from saved

data. This is useful if a simulation is to be performed with a fixed melt rate. The

asymmetric_plume provides an implementation of the horizontally-integrated model

described in Chapter 4. Various parameters describing the transverse profile of this

plume are provided through the associated plume_shape derived type. Finally, a

ground type exists as a stub, which could be fully implemented in future to provide

a basal surface with frictional information for a grounded ice sheet.

All of these implementations contain field types (see § A.2) for each variable

describing their state. They also contain objects representing the boundary

conditions and choices of parameterisations, described in more detail in § A.4.

This is illustrated in Figure A.3, showing the state of the objects at the beginning

of a representative simulation. The cryosphere class is a Puppeteer pattern

which, as described by Rouson et al. (2014), coordinates interactions between

various other classes (glacier and basal_surface, in this case) without them

needing to directly interact with each other. Thus, interdependencies between

different modules of code are simplified. For each time-step, the following sequence

of steps occurs, as illustrated in figure A.4:

1. The cryosphere first gets the ice thickness from the glacier.

2. This information is sent to the basal_surface object, with which it can solve

for its state at the current time using the QLM solver.

3. The cryosphere gets the current melt rate and/or friction parameters from

the basal_surface.

4. This information is sent to the glacier object, where it is used to integrate

its state forward in time with NITSOL.
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system:Cryosphere

ice
sub_ice
time = 0.

ice:IceShelf

thickness
velocity
kappa
viscosity_law
boundaries

sub_ice:Plume

thickness
velocity
velocity_dx
salinity
salinity_dx
temperature
temperature_dx
eos
entrainment_formulation
melt_formulation
ambient_conds
boundaries

thickness:Cheb1dScalarField

velocity:Cheb1dVectorField

kappa:Cheb1dScalarField

viscosity_law:NewtonianViscosity

boundaries:SeasonalGlacierBoundary

thickness:ScalarField

velocity:VectorField

velocity_dx:VectorField

salinity:ScalarField

salinity_dx:ScalarField

temperature:ScalarField

temperature_dx:ScalarField

eos:LinearEos

entrainment:Jenkins1991Entrainment

melt_formulation:OneEquationMelt

ambient_conds:UniformAmbientConditions

boundaries:UpstreamPlumeBoundary

Figure A.3: A UML object diagram displaying the state of simulation ifNeJeDa
immediately after it has been initialised. Not all components are shown in each object for
reasons of space.
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system:Cryosphere

system:Cryosphere

ice:Glacier

ice:Glacier

sub_ice:BasalSurface

sub_ice:BasalSurface

QLM Solver

QLM Solver

Newton Solver

Newton Solver

integrate(time)

ice_thickness()

ice thickness

solve(ice_thickness, time)

qlm_solve()

state of plume

basal_melt()

melt rate at base of ice

basal_drag()

drag at base of ice

integrate(basal_melt, basal_drag, time)

solve_iteratively()

state of shelf

Figure A.4: A UML sequence diagram illustrating the operations involved in each time
step of ISOFT. Some of the argument lists have been simplified for reasons of space.

A.2 Discretisation

Spatial derivatives of the variables describing the state of the ice shelf and plume

are frequently needed. Multiple approaches exist to discretise these variables and

compute their gradients (e.g. finite difference, finite element, pseudospectral, etc.)

and the desire was to avoid restricting ISOFT to a particular one. To this end, the

Abstract Calculus design pattern, described by Rouson et al. (2014, Chapter 6),

was adopted. This design pattern attempts to resolve the disconnect between high-

level mathematical notation and the low-level representation of data and operators

in code. A hierarchy of derived types was written representing mathematical

fields of both scalar and vector quantities (see figure A.5). These fields overloaded

all of the standard arithmetic and intrinsic mathematical functions, as well as

offering methods for various differential operators. Calculations involving these

field types could then be written to be agnostic with regards to field geometry

or discretisation technique. In order to send field data to external libraries of

numerical methods, such as NITSOL, methods were also provided to return them
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abstract_fields_mod

array_fields_mod

uniform_fields_mod

cheb1d_fields_mod

AbstractField

raw(): real[:]
set_from_raw(raw: real[:])

ScalarField

d_dx(): ScalarField
grad(): VectorField
operator+(rhs: ScalarField): ScalarField
operator*(rhs: real): ScalarField
set_derivative(deriv: ScalarField)
get_derivative(): ScalarField
unset_derivative()

VectorField

d_dx(): VectorField
div(): ScalarField
operator+(rhs: VectorField): VectorField
operator*(rhs: real): VectorField
set_derivative(deriv: VectorField)
get_derivative(): VectorField
unset_derivative()

ArrayScalarField

data: real[:]

raw(): real[:]
set_from_raw(raw: real[:])
operator+(rhs: ScalarField): ScalarField
operator*(rhs: real): ScalarField
set_derivative(deriv: ScalarField)
get_derivative(): ScalarField
unset_derivative()

ArrayVectorField

data: real[:]

raw(): real[:]
set_from_raw(raw: real[:])
operator+(rhs: VectorField): VectorField
operator*(rhs: real): VectorField
set_derivative(deriv: VectorField)
get_derivative(): VectorField
unset_derivative()

UniformScalarField UniformVectorField

Cheb1dScalarField

d_dx(): ScalarField
grad(): VectorField

Cheb1dVectorField

d_dx(): VectorField
div(): ScalarField

Figure A.5: A UML class diagram for the field types, showing a few notable methods.
The uniform field types implement all inherited abstract methods, but these are not
shown for reasons of space.

as an array of double precision values.

Properties such as geometry and discretisation are specified within the concrete

implementations of the field types. As shown in figure A.5, two groups of these

concrete field types exist. The first is the cheb1d_scalar_field/cheb1d_vector_

field, which offers a 1-D field on a Chebyshev grid. The Chebyshev pseudo-

spectral method, described in § 3.1.1, is used to calculate derivatives, with Fast

Fourier Transforms performed using the FFTW3 library (Frigo and Johnson, 2005).

These were subtypes of the abstract classes array_scalar_field/array_vector_

field. The array field types provide standard implementations of arithmetic and

mathematical functions, leaving only those methods involving grid-layout or calculus

to be implemented by concrete type-descendents. This allows easier creation of new

field types with reduced code duplication. The other pair of concrete field types

are uniform_scalar_field/uniform_vector_field which, as the names suggest,
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are uniform throughout all space. These were written to allow some optimisation

for cases where a variable proves to be uniform.

The hope was that ISOFT could remain agnostic about which concrete type

of field is being used. However, bugs in the version of the gfortran compiler used

(v6.2.0) made this impossible and in many situations the cheb1d implementations

are explicitly specified. As a result of this (and some lazy code design) ISOFT

has come to depend on using those particular implementations in a number of

areas, particularly around preconditioning (see § A.3). However, relatively minor

refactoring should allow this issue to be resolved in future.

Despite the conceptual elegance of the Abstract Calculus design, a number

of practical issues mean it was likely a mistake to use it so extensively within

ISOFT. First is the problem of compiler bugs, mentioned earlier. One of these

resulted in memory leaks when a dynamically-allocated field object was returned

from a function call. A workaround using an Object Pool was ultimately found.

The Object Pool pattern passes pointers to preallocated objects, rather than

creating new ones, and releases them back to the pool once they are no longer being

used (Grand, 2002, Chapter 5). This avoided memory leaks but required frequent

calls to book-keeping functions which ensured objects were released to the pool at

the appropriate time. These calls eliminated much of the elegance of Abstract

Calculus. Furthermore, overloading the arithmetic operators introduced overhead

and likely prevented the compiler from making many optimisations. With hindsight,

a better approach would have been to store the data in standard Fortran arrays

and have calculus functions provided by a set of derived types according to the

Strategy pattern (discussed in § A.4).

However, one situation in which using the field types proved useful was when

implementing automatic differentiation (Neidinger, 2010). This works by applying

the chain rule to the arithmetic operations and elementary mathematical functions

applied to data in order to calculate the derivative of the result with respect to one

or more pieces of the data used to produce it. The simpler of the two approaches

to doing this is to overload the arithmetic operators and elementary functions to
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propagate the derivative using the chain rule.1 Consider ordered pairs of the form

〈u, u′〉, where u is some value u′ is a differential associated with that value. Then:

〈u, u′〉+ 〈v, v′〉 = 〈u+ v, u′ + v′〉,

〈u, u′〉 × 〈v, v′〉 = 〈uv, u′v + uv′〉,

sin〈u, u′〉 = 〈sin u, u′ cosu〉,
...

with all other arithmetic and mathematical functions similarly overloaded. As the

field types already provide overloading of these operators and routines, adding

automatic differentiation required less effort to implement than would otherwise

have been necessary.

Automatic differentiation was provided as an optional feature, which the abstract

field types support but which subtypes are not required to implement; if the feature

is not implemented in a subtype then trying to use the default implementation in

the abstract class will result in a run-time error. Methods are provided with which

one field can be used to set the derivative values for another. If the derivative for a

field has been set then it will be propagated through all subsequent mathematical

operations involving that field. Otherwise, no automatic differentiation occurs. The

derivative value of the result can be retrieved with a getter method. Automatic

differentiation is turned off with a method which clears the derivative information.

The array fields and their subtypes provide automatic differentiation, but the

uniform fields do not.

These field types were sufficiently general that they could be used in a number

of settings other than ISOFT. As such, they were written as a separate library

called FACTUAL (Fortran Abstract Calculus Types, Usable and Aesthetic Library).

This is distributed with ISOFT but can also be downloaded on its own.
1The other technique, known as source transformation, automatically rewrites the entire code

prior to compilation so that propagation of the derivative is performed inline.
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A.3 Nonlinear Solvers

A.3.1 Ice Shelf Solver: NITSOL

As described in § 3.1.2, when integrating the ice shelf the nonlinear solver NITSOL

(Pernice and Walker, 1998) was used. This is a legacy package written in FOR-

TRAN77. ISOFT contains an explicit interface to the main NITSOL subroutine

so that arguments can be checked by the compiler when it is invoked. NITSOL

takes as an argument a subroutine which receives the current estimate of the state

of the system and returns the corresponding residual according to equation (3.18)

or (3.22), depending on whether solving for the ice thickness or velocity. The state

of the system and the residual are both represented as 1-D arrays of real values.

When the state array is received by the residual subroutine it is used to update

the value of a field type (see § A.2). Operations are performed using the field type

to calculate a residual field. A 1-D array containing the data of the residual field

is then extracted and returned by the subroutine.

For NITSOL to converge it required a preconditioner which inverts the Jacobian

operator DxA ≡ ∂A/∂x + A∆x (where ∆x is the differential operator in the x-

direction). NITSOL receives the preconditioner as an additional subroutine which

takes as an argument an array to be preconditioned and returns the result of

that preconditioning as an array. Similarly to the calculation of the residual,

the preconditioner subroutine converts the array to a field type, performs the

preconditioning, and then converts back to an array. As described in § 3.1.2,

the operator can be inverted by solving a tridiagonal matrix approximating the

Jacobian using finite-difference discretisation. A derived type called a jacobian_

block (figure A.6a) was written to encapsulate this process, reinitialised every

time a new value of A is needed by the operator. This derived type is also able

to represent two variations on the Dx operator: α + DxX, where α is a scalar;

and DxA∆x. In addition to inverting the operator on a field, jacobian_block

objects can apply the forward operator to fields.
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JacobianBlock

operator*(rhs: ScalarField): ScalarField
operator+(rhs: real): JacobianBlock
operator+(rhs: ScalarField): JacobianBlock
operator+(rhs: JacobianBlock): JacobianBlock
assignment=(rhs: JacobianBlock)
solve_for(rhs: ScalarField): ScalarField

(a)

FinDiffBlock

solve_for(rhs, offset: ScalarField): ScalarField
solve_for(rhs, offset: VectorField): VectorField

(b)

PseudospecBlock

solve_for(rhs, ScalarField, bound_loc: integer, bound_val: ScalarField, good_bound: integer): ScalarField
solve_for(rhs, VectorField, bound_loc: integer, bound_val: VectorField, good_bound: integer): VectorField

(c)

Figure A.6: UML class diagrams for the various derived types used in preconditioning
nonlinear solvers. They have conceptually-similar interfaces, but differences exist due to
the somewhat ad-hoc way in which they were developed.

A.3.2 Plume Solver: QLM

The plume is solved using the quasi-linearisation method (QLM), as described in

§ 3.1.3. As the QLM is an obscure algorithm, a custom implementation was written

in modern Fortran for ISOFT. It takes as arguments functions representing the

linear and nonlinear portions of the nonlinear system of ODEs being solved. It also

requires a function which computes the product of the Jacobian of the nonlinear

operator with an arbitrary state vector and, optionally, a preconditioner function.

All of these operate on and return arrays of real data. The QLM requires solving a

linear system at each iteration and this is done using a slightly modified version

of the GMRES implementation in NITSOL. The modification allows the GMRES

solver to use an initial guess of the solution to the linear system, rather than assume

a good initial guess to be zero (as made sense in the context of NITSOL). An

explicit interface was written to this FORTRAN77 implementation, along with a

wrapper which makes many of the arguments optional, automatically creates the

necessary work arrays, and allows for less verbose definitions of the linear system.

Much as when solving for the state of the ice shelf, the linear and nonlinear

plume operators take 1-D arrays of real values as arguments. They then use a

method of the plume class to update the various fields representing the plume
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variables from this array. The necessary mathematics is performed using these fields

and the results converted back to 1-D arrays which are then returned to the QLM

solver. The preconditioner works by inverting the linear operator of the plume,

taking the anti-derivative of each variable. A derived type called the pseudospec_

block (figure A.6c) was written to apply this to field types, reversing the Chebyshev

differentiation algorithm described on page 84. A similar derived type called fin_

diff_block (figure A.6b) was also written which performs the same operation

using a tridiagonal matrix representing a finite-difference approach to differentiation.

However, the much greater accuracy and comparable computational cost of the

pseudospectral_block made it the better choice.

As mentioned in § 3.1.3, it was found that, to get the level of accuracy needed

for the plume solver to converge, the product of the Jacobian could not simply

be evaluated using a finite difference approximation. Instead, the automatic

differentiation feature of the field types described in § A.2 was used. The vector to

be multiplied by the Jacobian is used to provide derivative values for the plume

variables. The nonlinear operator is then applied for the current plume state, with

the overloaded operators of the field types applying the chain rule at each step

to propagate the derivative. The derivative of the operator result will then be

the product of the Jacobian and the initial vector.

A.4 Parameterisations and Boundary Conditions

One of the goals of ISOFT is to allow choices of parameterisations to easily be

changed. This is achieved using the Strategy pattern (Rouson et al., 2014, Chapter

7), which provides a common abstract interface to accomplish some task, with

subtypes implementing different strategies to do so. In ISOFT, the methods in the

abstract types were generally given a large number of arguments, to ensure sufficient

information is available for all potential parameterisations. Parameter and coefficient

values can be specified for each parameterisation when initialising its object.

The only parameterisation for the ice shelf is viscosity (figure A.7). The

general interface is provided by the abstract_viscosity type. It’s subtypes are
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AbstractViscosity

ice_viscosity(velocity: VectorField, temperature: real, time: real): ScalarField

NewtonianViscosity GlensLawViscosity

Figure A.7: A UML class diagram for the viscosity type. Subtypes implement all
inherited abstract methods, but this is not shown for reasons of space.

AbstractEntrainment

entrainment_rate(velocity: VectorField, thickness, depth, density: ScalarField, time: real): ScalarField

Jenkins1991Entrainment Kochergin1987Entrainment

Figure A.8: A UML class diagram for the entrainment type. Subtypes implement the
inherited abstract method, but this is not shown for reasons of space.

newtonian_viscosity, which returns a uniform_field in all cases, and glens_

law_viscosity which calculates the viscosity from the ice velocity as described

in equation (1.3). Currently Glen’s law is only implemented for the 1-D case, as

attempting to implement it for higher dimensions resulted in a compiler bug.

The plume contains a few parameterisations. The subtypes of abstract_

entrainment calculate an entrainment rate for the plume (figure A.8). These

are jenkins1991_entrainment and kochergin1987_entrainment, implementing

equations (1.11) and (1.12), respectively. The abstract_melt_relationship

(figure A.9) provides an interface for calculating the melt rate of the ice, in addition

to the heat and salt fluxes resulting from melting. The one equation approximation

of equation (3.11) was implemented as one_equation_melt. A variation of this was

implemented as ave_one_equation_melt, implementing the horizontally-averaged

version of the one equation formulation found in equation (4.8). The subtype
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AbstractMeltRelationship

solve_for_melt(velocity:VectorField, pressure, temperature, salinity, plume_thickness: ScalarField, time: real)
salt_equation_terms(): ScalarField
heat_equation_terms(): ScalarField
melt_rate(): ScalarField
has_heat_terms(): logical
has_salt_terms(): logical

OneEquationMelt AveOneEquationMelt Dallaston2015Melt

Figure A.9: A UML class diagram for the melt type. Subtypes implement the inherited
abstract method, but this is not shown for reasons of space.

EquationOfState

water_density(temperature, salinity: ScalarField): ScalarField
water_density_derivative(temperature, d_temperature, salinity, d_salinity: ScalarField): ScalarField

LinearEos AveragedLinearEos PrescribedEos

Figure A.10: A UML class diagram for the equation of state type. Subtypes implement
all inherited abstract methods, but this is not shown for reasons of space.

dallaston2015_melt provides a way to convert from the scaling choices used in

§ 2.1.1 to those used in ISOFT, which was useful for writing unit tests. The

three equation formulation of melting, found in equation (1.17), has not yet been

implemented but it would not be difficult to do so. Finally, the abstract type

equation_of_state sets out the interface for calculating the density of water

from salinity and temperature (figure A.10). Subtype linear_eos implements the

linearised equation of state in equation (1.10). The related averaged_linear_

eos provides additional methods methods for calculating ρ and ρ̃, as defined in

equations 4.6 and 4.7. Last, the subtype prescribed_eos calculates the density

assuming no dependence on temperature and using a prescribed salinity profile;

this is also useful in unit tests.
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A similar approach was taken for boundary conditions and ambient ocean proper-

ties. The types glacier_boundary (figure A.11) and plume_boundary (figure A.12)

provide interfaces for identifying the types of boundary conditions at different

locations and determining the appropriate values. The default implementations

effectively do not specify boundary conditions and the methods must be overridden

to be useful. The interface provided by plume_boundary is quite different from

that provided by glacier_bound. The latter should ideally be refactored to be

closer to the more usable interface provided by the former. The subtypes for

glacier_boundary are dallaston2015_glacier_boundary, which provides time-

independent boundary conditions like those described in equations (3.34) and (3.35),

and seasonal_glacier_boundary, which modifies these conditions according to

equations (3.40) or (3.48) to allow seasonal oscillations in ice flux.

The first subtype of plume_boundary is simple_plume_boundary, which imple-

ments boundary conditions of the type described in equations (3.34) and (3.36).

Closely related to this is dallaston2015_seasonal_boundary, which modifies the

boundary conditions according to equation (3.37). The type which was ultimately

used in all simulations was upstream_plume_boundary. This takes a user-provided

function which specifies the inflow value of each plume variable and then, assuming

no diffusion, integrates the plume a small distance upstream along the current basal

draft of the ice shelf using rksuite (Brankin and Gladwell, 1994). This allows

the plume solver itself to avoid handling narrow boundary layers where the plume

salinity and temperature change rapidly. Outflow conditions are again defined

according to equation (3.36). Ambient ocean conditions are described according

to the interface defined by the abstract type ambient_conditions (figure A.13).

At present only one implementation is provided (uniform_ambient_conditions),

specifying constant ambient salinity and temperature.
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GlacierBoundary

thickness_lower_bound(): integer[2]
thickness_upper_bound(): integer[2]
velocity_lower_bound(): integer[2]
velocity_upper_bound(): integer[2]
thickness_lower_type(): integer[:]
thickness_upper_type(): integer[:]
velocity_lower_type(): integer[:]
velocity_upper_type(): integer[:]
boundary_residuals(thickness: ScalarField, velocity:VectorField, viscosity:ScalarField, t: real): real[:]

Dallaston2015GlacierBoundary SeasonalGlacierBoundary

Figure A.11: A UML class diagram for the glacier boundary type. Subtypes implement
all inherited abstract methods, but this is not shown for reasons of space.

PlumeBoundary

thickness_bound_info(location, bound_type, bound_depth: integer)
velocity_bound_info(location, bound_type, bound_depth: integer)
salinity_bound_info(location, bound_type, bound_depth: integer)
temperature_bound_info(location, bound_type, bound_depth: integer)
thickness_bound(location: integer): ScalarField
velocity_bound(location: integer): VectorField
salinity_bound(location: integer): ScalarField
temperature_bound(location: integer): ScalarField
set_time(time: real)

SimplePlumeBoundary Dallaston2015SeasonalBoundary UpstreamPlumeBoundary

calculate(t: real, func: Procedure, b: ScalarField)

func is a procedure providing
derivative values to the
Runge-Kutta solver.

Figure A.12: A UML class diagram for the plume boundary type. Subtypes implement
all inherited abstract methods, but this is not shown for reasons of space.

AmbientConditions

ambient_temperature(depth: ScalarField, t: real): ScalarField
ambient_salinity(depth: ScalarField, t: real): ScalarField

UniformAmbientConditions

Figure A.13: A UML class diagram of the ambient conditions type. The subtype
implements all inherited abstract methods, but this is not shown for reasons of space.
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A.5 Unit Tests

Unit tests for ISOFT are run using the pFUnit2 framework. In addition to tests

for ensuring that the shelf and plume solvers converge to the correct solution,

described in § 3.1.4, unit tests were written to perform checks on initialisation

procedures, setter and getter methods, input and output methods, and all basic

mathematics (including automatic differentiation). A few of the parameterisations

do not currently have unit tests but these are closely related to implementations

which are tested, return trivial results, or are implicitly tested by their use in

other parts of the test suite.

A.6 Further Information

In addition to this overview of the ISOFT code, extensive documentation of

derived types and individual functions was written within the source itself. The

documentation can be extracted to produce HTML documentation using the

FORD tool (MacMackin, 2018b) and can be found online3 or be generated locally

after downloading ISOFT. This will provide guidance on how to initialise the

various objects needed to run a simulation. The distributed ISOFT code also

contains information on how to compile it and an example program using the

ISOFT framework.

2Available at http://pfunit.sourceforge.net/.
3See cmacmackin.github.io/isoft.

http://pfunit.sourceforge.net/
cmacmackin.github.io/isoft
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